
PhyloNet: Phylogenetic Networks Toolkit

User Documentation
The BioInformatics Group

Department of Computer Science
Rice University

http://bioinfo.cs.rice.edu

Development and maintenance of the PhyloNet software package is made possible through
generous support from the Department of Energy (grant DE-FG02-06ER25734), the National
Science Foundation (grant CCF-0622037), the George R. Brown School of Engineering (Roy
E. Campbell Faculty Development Award), and the Department of Computer of Science at

Rice University.

Copyright

The PhyloNet Toolkit
Copyright (C) 2005 Rice University BioInformatics Group

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301, USA.

2

Contents

1 Introduction 4
1.1 Contributors . 4
1.2 Contact Info . 4

2 Installation 5
2.1 Usage Instructions . 5

3 Software Conventions 6
3.1 Phylogenetic Tree Representation: The Newick Format 6
3.2 Phylogenetic Network Representation: The eNewick Format 7

4 Tool Reference 9
4.1 countcoal . 9
4.2 lca . 9
4.3 mast . 10
4.4 rf . 10
4.5 recomp . 11
4.6 riatahgt . 12
4.7 charnet . 14
4.8 cmpnets . 15
4.9 netpars . 16

4.9.1 Maximum parsimony of phylogenetic networks 17

3

Chapter 1

Introduction

PhyloNet is a collection of tools designed mainly for analyzing, reconstructing, and eval-
uating reticulate (or non-treelike) evolutionary relationships, generally known as phylo-
genetic networks. Various methods that we have developed make use of techniques and
tools from the domain of phylogenetic trees, and hence the PhyloNet package includes
several tools for phylogenetic tree analysis.

PhyloNet is released under the GNU General Public License. For the full license, see
the file GPL.txt included with this distribution. Though the source code has not yet
been posted, it is available by request.

1.1 Contributors

PhyloNet is designed, implemented, and maintained by the BioInformatics Group, which
currently includes Professor Luay Nakhleh (nakhleh@cs.rice.edu) and Ph.D. students
Derek Ruths (druths@cs.rice.edu) and Cuong Than (cvthan@cs.rice.edu). The
group is affiliated with the Department of Computer Science at Rice University.

1.2 Contact Info

Feel free to contact us by mail, email, phone or fax:

The BioInformatics Group
c/o Luay Nakhleh

Department of Computer Science
Rice University

6100 Main Street
Houston, TX 77005

Email: nakhleh@cs.rice.edu
Phone: 713-348-3959
Fax: 713-348-5930

4

Chapter 2

Installation

System Requirements In order to run the PhyloNet toolkit, you must have Java 1.5.0
or later installed on your system. All references to the java command assume that Java
1.5 is being used.

Downloading phylonet.jar Acquire the current release of PhyloNet by download-
ing the most recent version of the PhyloNet JAR file. You will have a file named
phylonet vX Y.jar, where X is the major version number and Y is the minor version
number.

Installing the file Place this in the desired installation directory. The remainder of this
document assumes that it is located in $PHYLONET PATH/jar.

Installation is now complete. In order to run PhyloNet, you must execute the file
phylonet vX Y.jar, as described in the next section.

2.1 Usage Instructions

All tools are run by executing the jar, phylonet vX Y.jar, and specifying the tool name
and arguments.

Executing phylonet vX Y.jar The downloaded file, phylonet vX Y.jar, is an executable
jar. On the command-line, type

java -jar $PHYLONET PATH/jar/phylonet vX Y.jar -h

This will run the tool and print the help message. The help message will include a listing
of the tools available for execution.

Running tool <tool> To run the specific tool, <tool>, type

java -jar $PHYLONET PATH/jar/phylonet vX Y.jar <tool>

Since each tool requires different input data and parameters, it is helpful to review the
help for a given tool before using it. To see the help information, type

java -jar $PHYLONET PATH/jar/phylonet vX Y.jar <tool> -h

For more detailed help information see the Tool Reference section of this document.

5

Chapter 3

Software Conventions

3.1 Phylogenetic Tree Representation: The Newick Format

Many tools require trees as input or produce trees as output. All of which will be in
Newick format [2]. In brief, Newick format uses nested parentheses to model trees. A
single tree is always terminated by a semi-colon.

Name and Distance Properties Every node can have two properties: a name and a
distance from its parent. The name of a node must be a string with using only alphanu-
meric characters. This distance can be any positive, real number. In Newick format,
these properties are separated by a “:” character. Thus, the node “foo” that is 0.63 units
away from its parent is written

foo:0.63

Either of these properties can be omitted. If the distance is omitted, the colon is not
written.

Specifying Children Internal nodes have other nodes as their children. This is specified
by placing a parenthetical clause before the name and distance pair:

(...)foo:0.63

Within the parentheses, the node’s children are written, separated by commas. The
listing does not specify order:

(childA:0.1, childB, :0.3)foo:0.63

This specifies that the node “foo” has three children, one of which is unnamed and one
of which has no distance specified.

Roots By default, a tree is rooted. Therefore, the tree:

(A,(B,C)I1)ROOT;

is rooted at the node named “ROOT”. To override this and specify an unrooted tree,
the entire tree specification must be preceded by the string [&U]. Therefore the following
tree is not rooted:

[&U] (A,(B,C)I1)D;

6

3.2 Phylogenetic Network Representation: The eNewick For-
mat

The Newick format for representing and storing phylogenetic trees was adopted in 1986 [2],
and it has been the standard for almost all phylogeny software packages ever since.
This format captures an elegant correspondence between leaf-labeled trees and matched
parentheses, where the the leaves are represented by their names and the internal nodes
by a matched pair of parenthesis that contains a list of the Newick representation of all
its children. Shown in Figure 3.2 are three trees along with their representations in the
Newick format.

A B C D E F G H

X

Y

Figure 3.1: A phylogenetic network N with eight leaves (labeled A, . . . ,H) and two network nodes X
and Y . Shown are the orientation of the network edges; all other edges are directed away from the root
(toward the leaves).

A B C G H

XX

Y
E F

X

Y
D

Y

N ′ = ((A, (X, (B, (C, Y)))), ((X, G),H)) X = (F, (E, Y)) Y = (D)

Figure 3.2: Three trees, N ′, X, and Y , along with their Newick representation. These three trees form
the tree decomposition F of the phylogenetic networks N in Figure 3.1. The eNewick representation of
N is the triplet 〈N ′;X;Y 〉.

However, no similar format exists for phylogenetic networks; instead, existing phylo-
genetic network software tools store these networks as adjacency lists of their underlying
graphs, which are usually very large and necessitate translation of representations among
the different tools. We propose a new format, which we call the extended Newick, or
eNewick, format. In this format, a phylogenetic network is decomposed into trees, each
of which is represented using the Newick format. Figure 3.2 shows the tree decomposition
and eNewick representation of the network N in Figure 3.1.

The eNewick representation of phylogenetic network is the format used in the phyloge-
netic network characterization and comparison utilities in PhyloNet (described below).

7

Phylogenetic Network Representation: The Edge-list Format

The RIATA-HGT method outputs phylogenetic networks in the edge-list format. In the
case of horizontal gene transfer, a species tree is almost always assumed, and hence the
phylogenetic network can be represented by a pair 〈ST, X〉, where ST is the species tree
in Newick format (with names assigned to internal nodes), and X is the list of edges
posited between the edges of ST .

8

Chapter 4

Tool Reference

Descriptions of the tools available in the PhyloNet package are provided here. Tools are
listed in alphabetical order.

General Usage When running a tool, the tool name and arguments must be preceded
by:

java -jar $PHYLONET PATH/jar/phylonet vX Y.jar

4.1 countcoal

Description This countcoal tool computes the number of coalescent scenarios that
can explain the incongruence observed between two trees. The tool reads two trees from
standard in (one tree per line) and prints the number of coalescent scenarios to standard
out. The trees must be specified in newick format.

Usage

countcoal [-h] [-f 〈infile〉] [-o 〈outfile〉]

The default behavior described above can be modified by using the following options:

-h prints the help message

-f 〈infile〉 reads the pair of trees from the file 〈infile〉. This file should contain
the trees on the first two lines—one tree per line.

-o 〈outfile〉 writes the output to the file 〈outfile〉 rather than the standard out.

Citing If you use this tool in published work, please cite [18].

4.2 lca

Description This lca tool computes the least common ancestor of a group of nodes
in a tree. The tool reads the tree, T , as input first. The tool prints this tree with all
internal nodes labeled. If a node is not labeled in the original tree, then the node receives
a generated name. Then the tool reads sets of nodes. A node set is a collection of names

9

belonging to nodes in T . Syntactically, a set of nodes is a set of space delimited names
on the same line. For each node set read, lca prints their least common ancestor.

Usage

lca [-h] [-o filename] [-t filename] [-n filename]

By default, the tree and node set are read from standard in and the results are written
to standard out. This behavior can be modified by using the following options:

-h prints the help message

-o filename writes all the output to the file filename

-t filename reads the tree from the file filename

-n filename reads the node set from the file filename

4.3 mast

Description The mast tool computes a Maximum Agreement Subtree of a pair of trees,
using the algorithm of Steel and Warnow [17]. The trees must be either all rooted or all
unrooted. If the trees are rooted, then the rooted MAST is computed. If the trees are all
unrooted, then the unrooted MAST is computed. All trees must also have at least three
leaves.

Usage

mast [-h] [-a] [-i filename] [-o filename]

By default, the trees are read from standard in and the MAST is written to standard
out. This behavior can be modified by the following options:

-h prints the help message

-o filename writes all the output to the file filename

-i filename reads all the input trees from the file filename

To compute all MASTs, specify an option -a in the command line arguments. How-
ever, since the number of MASTs may be exponential in the number of leaves in the trees,
using this option can slow down the execution time (in some cases considerably). Plans
for modifying the code so that it computes MASTs of more than two trees are currently
under way.

4.4 rf

Description This tool computes the symmetric difference, also known as the Robinson-
Foulds (RF) distance [14], between two trees. The trees do not need to be rooted. The
first tree read is the model tree. The second is the experimental tree.

10

Usage

rf [-h] [-m filename] [-e filename] [-o filename]

The tool reads in two trees. It outputs the number of False Negative edges, the number
of False Positive edges, the number of internal edges in the model tree and finally the
number of internal edges in the experimental tree. By default, the tool reads the trees
from the standard in and print the results to standard out. This behavior can be modified
by the following options:

-h prints the help message

-m filename indicates that the model tree be read from file filename

-e filename indicates that the experimental tree be read from the filefilename

-o filename writes all the output to the file filename

4.5 recomp

Description This tool is an implementation of the RECOMP algorithm for detecting
recombination breakpoints along a set of aligned genetic sequences [15, 16]. For a detailed
description of the algorithm, see [16]. In brief, the algorithm reads in a set of aligned
genetic sequences, a window size, a step size, and a window comparison function. The
function is designed in such a way that highly different adjacent windows correlate to
windows separated by a recombination breakpoint. The method returns the value of the
comparison function evaluated at positions along the length of the sequences.

Usage

recomp [-h] -w WIN SIZE -s STEP SIZE [-d RF|SPR] [-i IFILE [FMT]]
[-o OFILE] -c FXN PAUP PATH POP SIZE NUM ITERS NUM LVLS

-h prints the help message

-w WIN SIZE specifies the window size

-s STEP SIZE specifies the step size

-d RF|SPR specifies what distance measure should be used. The Robinson-Foulds
(RF) distance [14] is the default. The Subtree-Prune-Reroot (SPR) distance is also
supported, and in this case the RIATA-HGT heuristic [10] is used to compute the
distance.

-i FILE FMT specifies the file that should be used as input. If omitted, then
input is read from the STDIN. By default, input is read as a fasta file. FMT can be
used to override the default. FASTA indicates that the input is in FASTA format.
PLAIN indicates that the input is in a plain format in which each line of the file
has a sequence name and the sequence itself. The plain format also supports an
optional header declaring the number of sequences and the number of nucleotides
in the sequences.

11

-o OFILE specifies the file that will be used for output. If omitted, then STDOUT
is used.

-c FXN PAUP PATH POP SIZE NUM ITERS NUM LVLS specifies the window
comparison function that will be used.

• PAUP PATH is the path to a PAUP executable

• POP SIZE is a parameter used by PAUP. It specifies the number of trees that
PAUP will maintain in memory during maximum parsimony search. The rec-
ommended value for this is 100.

• NUM ITERS is a parameter used by PAUP, specifying the number of iterations
to use during the maximum parsimony search. Values between 25 and 100 tend
to yield accurate trees.

• NUM LVLS specifies the number of tree levels that should be included in the
window comparison. In [16], this is the k parameter. Taking more levels
increases the number of non-optimal trees included in the window analysis. In
[16], 3 levels were found to give the best result.

For an explanation of the different functions, please see [16]. Valid choices of FXN
are:

• PARS - the parsimony difference function

• MAX - the average maximum distance

• MIN - the average minimum distance

• INT - the percent intersection of the window tree sets

Citing If you use this tool in published work, please cite [16].

4.6 riatahgt

Description This tool is an implementation of the RIATA-HGT algorithm for detecting
and reconstructing horizontal gene transfer events from phylogenetic incongruence. For
a detailed description of the algorithm, see [10]. In brief, the algorithm reads in a single
species tree and any number of gene trees. It returns the horizontal gene transfer events.

Usage

riatahgt [-h] [-u] [-p prefix] [-i filename] [-o filename]

The tool reads a set of trees, either from the standard input or from the input file
specified with the -i option. For the tool to run, there has to be at least two trees in the
input. If it reads k trees (k ≥ 2), it assumes that the first tree is the species tree and the
remaining trees are the gene trees. The tool then proceeds by computing solutions on
pairs of species/gene trees. In other words, if the input contains k trees T1, . . . , Tk, the
tool computes solutions for the pairs (T1, T2), (T1, T3), . . . , (T1, Tk). Further, the tool
prints the solutions for these pairs in this particular order.

For each pair, the tool first prints the species/gene trees, in this order, with the
internal nodes labeled (this labeling is needed for printing the HGT edges). The user can

12

specify a particular prefix to name the internal nodes with the -p option. For example, if
the user species -p Int, and assuming there are ` internal nodes, then the tool will label
the internal nodes of the species tree as Int1, Int2, . . ., Int`. The internal node names
in the HGT events refer to the names in the species, and not the gene, tree. Because
solutions might share common HGT events, we group and print them by components to
make the tool’s ouput more concise and informative. From the tool’s output, one can
get a complete solution by selecting an event from each component. For example, let’s
consider the following species and gene trees:

ST = ((e,(f,g)I1)I2,((a,(b,c)I3)I4,d)I0)I5;

GT = (((a, b), c), (d, ((e, f), g)));

HGT events for this pair (ST, GT) are computed and printed by the tool as:

There are 3 component(s), which account for 27 solutions, each of size 3

--

Component I5:

Solution1:

I5 -> I4 [time violation?]

Solution2:

d -> I2

Solution3:

I2 -> d

--

Component I2:

Solution1:

f -> e

Solution2:

I2 -> g [time violation?]

Solution3:

e -> f

--

Component I4:

Solution1:

I4 -> c [time violation?]

Solution2:

a -> b

Solution3:

b -> a

--

There are 27 possible solutions for this pair of trees, each of which consists of events
from sub-solutions of each component. The set {d -> I2, f -> e, a -> b} is a solu-
tion, for example. Note that an HGT event has the format:

sn → tn

where sn and tn are the names of nodes in the species tree, and are the source and target,
respectively, of an HGT edge. This indicates that an edge should be added from sn to
tn in the species tree.

13

By default the all trees are read from standard in and the HGT events are written to
standard out. This behavior can be changed by using the following options:

-h prints the help message

-i filename indicates that the species tree and gene tree(s) are read from file
filename

-o filename writes all the output to the file filename

-p prefix specifies a name prefix used to label internal nodes. If no prefix is
specified, then the default prefix I is used.

Input trees are always refined and contracted before RIATA-HGT computes HGT
events. In general, this detects fewer HGT events than when the trees are left intact.
In some cases, however, computing HGT events with the refined and contracted trees
might produce more events than with the original trees (such cases are rare, though). To
prevent the trees from being refined and contracted, use the option -u; RIATA-HGT will
compute events for the original trees provided.

Citing If you use this tool in published work, please cite [10].

4.7 charnet

Description This tool implements functions to compute the trees, tripartitions and
clusters contained in a phylogenetic network [8, 13, 12]. Please note that the clusters
and tripartitions returned by this tool will not contain trivial ones, that is, clusters and
tripartitions for the network’s root and leaves.

Usage

charnet [-h] [-i input] [-o output] -m tree|tri|cluster

By default, the tool reads the input network from the standard input, and outputs the
result to the screen. The options -i and -o allow the user to specify the files that store
the input network and the result.

The user must include the option -m, followed by either tree, tri or cluster, to
specify which characterization he or she wants. For example, if the user types

charnet -i net -m cluster,

then the tool will read the network from the file net, and compute all the clusters con-
tained in this network. The result is printed on the standard output.

The option -h prints the help message on the usage of the tool. The network must be
in the eNewick format.

14

4.8 cmpnets

Description This tool allows the user to compute the distance between two phylogenetic
networks, based on their topologies. Three measures are currently implemented:

• Tree-based measure.

• Tripartition-based measure.

• Cluster-based measure.

See [11, 8, 13, 12] for complete description of these measures.

Usage

cmpnets [-h] [-i input1 input2] [-o output] -m tree|tri|cluster

By default, the tool reads the two networks from the standard input and prints the result
to the screen. By default, it is assumed that the network is described using the eNewick
format. However, the user has the option of describing the network as either a set of
clusters or a set of trees. If the network is described as a set of clusters, then the first
line of the network description contains a single word—“textttcluster”, followed by the
clusters, each listed on a separate line. The elements of a cluster are separated by white
space. Similarly, if the network is described as a set of trees, then the first line of the
network description contains a single word—“tree”, followed by trees, each listed on a
separate line using the Newick format.

For the two input networks, the only combinations of formats allowed are:

1. Both networks are in eNewick format. In this case, any of the three measures can
be invoked.

2. Both networks are described in terms of their constituent trees. In this case, only
the tree-based measure can be invoked.

3. Both networks are described in terms of their constituent clusters. In this case, only
the cluster-based measure can be invoked.

4. One network is in eNewick format, and the other is described in terms of its con-
stituent trees. In this case, only the tree-based measure can be invoked.

5. One network is in eNewick format, and the other is described in terms of its con-
stituent clusters. In this case, only the cluster-based measure can be invoked.

When at least one of the two networks is not in eNewick format, and since in this case the
type of measure used is automatically determined, entering the measure type is optional
(actually, it will be ignored by the tool).

If the options -i and -o are used, the networks will be read from the two specified
input files and the result is stored in the output file. In case the two networks are read
from the standard input, they must be separated by a blank line. After the inputs are
successfully parsed and the networks are constructed, the tool computes their distance.
For example, if the user types

cmpnets -o result -m tree,

15

then the tool will wait for the user to enter two networks as input, compute the tree-based
distance and then write the result to the file result. If the user already has clusters for
a network, he/she can type

cmpnets -i net1 net2,

where net1 contains a list of clusters for a network and a line ‘‘cluster’’ at the
beginning of the file, and net2 contains eNewick representation for another network.
The tool will compute the cluster-based distance between the two networks, and prints
the result to the screen. As in the tool charnet, input clusters for a network will not
contain trivial clusters, i.e., clusters that have either one taxon or all the taxa in the
network, since these clusters are present in all networks.

The option -h prints the help message on the usage of the tool.

4.9 netpars

Description This tools computes the parsimony score of a phylogenetic network, given
the sequences at its leaves, using the formulation of [9] (reviewed briefly below). The
sequences are split into blocks of equal length (with the exception of the last block,
which many not necessarily contain the same number of sites as the ones before) which
is specified by the user. The parsimony score is computed based on these blocks as well
as the trees contained inside the network.

Usage To compute the parsimony, type:

netpars [-h] [-i netfile seqfile] -b block-size [-o output]

By default, the tool will read the network and sequences from the standard input. In this
case, the input for the network and the sequences must be separated by a blank line. The
tool can also accept input from files, if the option -i is enabled. In this case, you specify
two file names, one for the file containing the network and the other for the sequences,
as arguments for the option -i. The score will be printed on the standard ouput, but it
can be directed to a file if the option -o is enabled.

The tool assumes that the input for networks is in the eNewick format. Refer to the
subsection 3.2 for the specification of the eNewick format. For the file that contains the
sequences, the tool expects the following format:

#taxa sequence-length

taxon-name1 sequence1

taxon-name2 sequence2

...

The first line in the file specifies the number of taxa and the length of every sequence.
The number of taxa should match the number of leaves in the network. Each subsequent
line contains a taxon name followed by the DNA sequence of this taxon. Note that all
sequences must have the same length; otherwise, the tool will throw an I/O exception.

The tool currently does not handle weighted parsimony, a feature that will be added
in the near future.

16

4.9.1 Maximum parsimony of phylogenetic networks

This relationship between a phylogenetic network and its constituent trees is the basis
for the MP extension to phylogenetic networks described. We now briefly review the
definitions of [9].

Definition 1 The Hamming distance between two equal-length sequences x and y, de-
noted by H(x, y), is the number of positions j such that xj 6= yj.

Given a fully-labeled tree T , i.e., a tree in which each node v is labeled by a sequence sv

over some alphabet Σ, we define the Hamming distance of an edge e ∈ E(T), denoted
by H(e), to be H(su, sv), where u and v are the two endpoints of e. We now define the
parsimony score of a tree T .

Definition 2 The parsimony score of a fully-labeled tree T , is
∑

e∈E(T) H(e). Given a set
S of sequences, a maximum parsimony tree for S is a tree leaf-labeled by S and assigned
labels for the internal nodes, of minimum parsimony score.

Given a set S of sequences, the MP problem is to find a maximum parsimony phy-
logenetic tree T for the set S. Unfortunately, this problem is NP-hard, even when the
sequences are binary [1, 4]. One approach that is used in practice is to look at as many
leaf-labeled trees as possible, and choose one with a minimum parsimony score. The prob-
lem of computing the parsimony score of a fixed leaf-labeled tree is solvable in polynomial
time [3, 5].

In the context of phylogenetic networks, the evolutionary history of a single (non-
recombining) gene is modeled by one of the trees contained inside the phylogenetic net-
work of the species containing that gene. Therefore the evolutionary history of a site s
is also modeled by a tree contained inside the phylogenetic network. A natural way to
extend the tree-based parsimony score to fit a dataset that evolved on a network is to
define the parsimony score for each site as the minimum parsimony score of that site over
all trees contained inside the network.

Definition 3 ([6, 7, 9]) The parsimony score of a network N leaf-labeled by a set S of
taxa, is

NCost(N, S) :=
∑

si∈S(minT∈T (N) TCost(T, si))

where TCost(T, si) is the parsimony score of site si on tree T .

Notice that as usually large segments of DNA, rather than single sites, evolve together,
Definition 3 can be extended easily to reflect this fact, by partitioning the sequences
S into non-overlapping blocks bi of sites, rather than sites si, and replacing si by bi

in Definition 3. This extension may be very significant if, for example, the evolutionary
history of a gene includes some recombination events, and hence that evolutionary history
is not a single tree. In this case, the recombination breakpoint can be detected by
experimenting with different block sizes.

17

Bibliography

[1] W.H.E. Day. Computationally difficult parsimony problems in phylogenetic system-
atics. Journal of Theoretical Biology, 103:429–438, 1983.

[2] J. Felsenstein. The newick tree format, 1986.
http://evolution.genetics.washington.edu/phylip/newicktree.html.

[3] W. Fitch. Toward defining the course of evolution: minimum change for a specified
tree topology. Syst. Zool, 20:406–416, 1971.

[4] L.R. Foulds and R.L. Graham. The steiner problem in phylogeny is NP-Complete.
Adv. Appl. Math., 3:43–49, 1982.

[5] J.A. Hartigan. Minimum mutation fits to a given tree. Biometrics, 29:53–65, 1973.

[6] J. Hein. Reconstructing evolution of sequences subject to recombination using par-
simony. Mathematical Biosciences, 98:185–200, 1990.

[7] J. Hein. A heuristic method to reconstruct the history of sequences subject to
recombination. Journal of Molecular Evolution, 36:396–405, 1993.

[8] B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun,
and R. Timme. Phylogenetic networks: modeling, reconstructibility, and accuracy.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1):13–23,
2004.

[9] L. Nakhleh, G. Jin, F. Zhao, and J. Mellor-Crummey. Reconstructing phylogenetic
networks using maximum parsimony. Proceedings of the 2005 IEEE Computational
Systems Bioinformatics Conference (CSB2005), pages 93–102, August 2005.

[10] L. Nakhleh, D. Ruths, and L.S. Wang. RIATA-HGT: A fast and accurate heuristic
for reconstrucing horizontal gene transfer. In L. Wang, editor, Proceedings of the
Eleventh International Computing and Combinatorics Conference (COCOON 05),
pages 84–93, 2005. LNCS #3595.

[11] L. Nakhleh, J. Sun, T. Warnow, R. Linder, B.M.E. Moret, and A. Tholse. Towards
the development of computational tools for evaluating phylogenetic network recon-
struction methods. In Proc. 8th Pacific Symp. on Biocomputing (PSB03), pages
315–326. World Scientific Pub., 2003.

[12] L. Nakhleh and L.S. Wang. Phylogenetic networks: properties and relationship to
trees and clusters. LNCS Transactions on Computational Systems Biology II, pages
82–99, 2005. LNBI #3680.

18

[13] L. Nakhleh and L.S. Wang. Phylogenetic networks, trees, and clusters. In Proceedings
of the 2005 International Workshop on Bioinformatics Research and Applications
(IWBRA 05), pages 919–926, 2005. LNCS #3515.

[14] D.R. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53:131–147, 1981.

[15] D. Ruths and L. Nakhleh. Recombination and phylogeny: Effects and detection. In-
ternational Journal of Bioinformatics Research and Applications (IJBRA), 1(2):202–
212, 2005.

[16] D. Ruths and L. Nakhleh. Recomp: A parsimony-based method for detecting recom-
bination. In Proc. 4th Asia-Pacific Bioinformatics Conference, pages 59–68, 2006.

[17] M. Steel and T. Warnow. Kaikoura tree theorems: computing the maximum agree-
ment subtree. Information Processing Letters, 48:77–82, 1993.

[18] C. Than, D. Ruths, and L. Nakhleh. Efficient enumeration of species/gene tree
reconciliation scenarios. 2006. Under review.

19

