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A Metric on the Space of Reduced
Phylogenetic Networks

Luay Nakhleh

Abstract—Phylogenetic networks are leaf-labeled, rooted, acyclic, and directed graphs that are used to model reticulate evolutionary
histories. Several measures for quantifying the topological dissimilarity between two phylogenetic networks have been devised, each
of which was proven to be a metric on certain restricted classes of phylogenetic networks. A biologically motivated class of

phylogenetic networks, namely, reduced phylogenetic networks, was recently introduced. None of the existing measures is a metric on
the space of reduced phylogenetic networks. In this paper, we provide a metric on the space of reduced phylogenetic networks that is

computable in time polynomial in the size of the networks.

Index Terms—Phylogeny, phylogenetic network, indistinguishability, reduced phylogenetic network, metric.

1 INTRODUCTION

PHYLOGENETIC trees model the vertical transmission of
genetic material from ancestors to descendants. When
reticulate evolutionary events, such as horizontal gene
transfer and hybrid speciation, occur, the evolutionary
history of the set of organisms is more appropriately
modeled as a special rooted, directed, acylic graph, called
phylogenetic network.

Measuring the distance between a pair of phylogenies
plays an important role in a variety of tasks, including
clustering, error estimation of reconstruction methods, and
detection of species/gene tree incongruities.

A distance measure, or metric m on a space S satisfies
three properties for all a,b,c € S:

P1l. m(a,b) = 0 if and only if a = b,

P2. m(a,b) = m(b,a), and

P3. m(a,b) +m(b,c) > m(a,c).
In addition to these three properties, in phylogenetics, it is
desired that the measure provides information about the
similarity of the two evolutionary scenarios represented by
the two phylogenies being compared. For example, viewing
each branch of a phylogenetic tree as indicative of a
bipartition of the set of taxa at the leaves, the Robinson-
Foulds measure quantifies the average number of biparti-
tions that the two trees disagree on [1]. As another example,
the subtree prune and regraft (SPR) measure quantifies an edit
distance that is correlated with the number of reticulate
evolutionary events required to reconcile the two trees
being compared [2].

To illustrate a metric that is of little or no utility in
phylogenetic comparison, consider the measure m on the
space of all phylogenetic trees, where m(P;, ) = 0 if the
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two phylogenies P, and P, are isomorphic (where the
bijection also respects the leaf labeling), and m(P;, P,) =1
otherwise. While it is clearly a metric on the space of
phylogenetic trees, such a “binary” measure tells whether
two phylogenetic trees are identical (up to isomorphism) or
not, but does not quantify the degree of similarity/
dissimilarity between them.

The literature on general labeled graphs contains metrics
that can be applied to phylogenetic networks, e.g., [3], [4],
but the results they yield do not necessarily provide insight
into the similarity or dissimilarity of the evolutionary
history scenarios provided by a pair of phylogenetic
networks. To address this issue, several measures have
been introduced to quantify the dissimilarity between a pair
of phylogenetic network topologies, each of which is metric
on a restricted class of phylogenetic networks [5], [6], [7],
81, [9], [10], [11], [12].

In 2004, Moret et al. introduced the concepts of
phylogenetic network indistinguishability and reduced phy-
logenetic networks to account for issues related to recon-
structibility of phylogenetic networks [6]. In that paper, a
dissimilarity measure was introduced, which was later
shown not to satisfy some of the properties P1-P3, even on
reduced phylogenetic networks [8]. In this paper, we review
the concepts of phylogenetic network reduction and
indistinguishability, and provide a novel metric on the
space of reduced phylogenetic networks.

2 INDISTINGUISHABILITY AND REDUCED
PHYLOGENETIC NETWORKS

In this section, we review the concepts of indistinguish-

ability and reduced phylogenetic networks, which were

first presented in [6]. We begin with general phylogenetic

networks.

Definition 1. A phylogenetic X-network, or X-network for
short, N is an ordered pair (G, f), where'

1. We use indeg and outdeg to denote the in-degree (number of parents)
and out-degree (number of children) of a node, respectively.

Published by the IEEE CS, Cl, and EMB Societies & the ACM

Authorized licensed use limited to: Rice University. Downloaded on May 10,2010 at 17:15:00 UTC from IEEE Xplore. Restrictions apply.



NAKHLEH: A METRIC ON THE SPACE OF REDUCED PHYLOGENETIC NETWORKS 219

® ® o
Ny N,

Fig. 1. Two phylogenetic X-networks, with X = {1,2,3,4}.

(a)

(b)

Fig. 2. (a) A soft polytomy and (b) its three possible refinements into
binary trees.

o (G = (V,E)isadirected, acyclic graph (DAG) with V
being the union of four pairwise-disjoint sets {r}, Vi,
Vr, and Vi, where

indeg(r) = 0 (r is the root of N);

- YoeV, indeg(v) =1 and outdeg(v) =0 (V,
are the leaves of N);

- YveVp, indeg(v) =1 and outdeg(v) > 2 (Vp
are the tree nodes of N); and

- Yve Wy, indeg(v) > 2 and outdeg(v) > 1 (Vy

are the network nodes of N),

and E CV x V are the network’s edges.

o f:Vy — X is the leaf-labeling function, which is a
bijection from Vi, to X.

We also use the notation L(N) for the set of leaves of
phylogenetic network N. Notice that the definition implies
that the undirected graph underlying a phylogenetic network
is connected. Fig. 1 shows two phylogenetic X'-networks,
where X' = {1, 2, 3, 4}. When the contextis clear, we may omit
the labeling function f and write N = (V, E)). Further, when
the set of taxa A labeling the leaves of a phylogenetic
X-network is clear from the context, we may omit the set
description and refer to it simply as a phylogenetic network.

In [6], Moret et al. discussed the issue of indistinguish-
ability among phylogenetic networks from a reconstruction
standpoint, and argued for the need of a measure that
separates phylogenetic networks up to indistinguishability,
or in other words, a measure that is a metric on the space of
all reduced phylogenetic networks. In this section, we briefly
review the concepts of distinguishability and reduced
(phylogenetic) networks, and in Section 3, we present a
metric on the space of all reduced networks that is
computable in polynomial time in the size of the networks.

Moret et al. introduced the concept of indistinguish-
ability to account for what we term here as “soft in-
polytomy.” In the context of (rooted) phylogenetic trees, a
(soft) polytomy is represented by a node that has more than
two children, and indicates the lack of phylogenetic signal
to resolve, or refine, the evolutionary relationship among
these children. Fig. 2 shows a soft polytomy at node r, along
with the three possible refinements of that polytomy. Even
though the true evolutionary history is one of the three
possible refinements, due to lack of phylogenetic signal, the
only scenario that might be reconstructible is the polytomy.

In the case of phylogenetic networks, a lack of phyloge-
netic signal may also result in nodes with more than two
parents. To illustrate, consider the scenario in Fig. 3. Four
genes, or markers, from five taxa 1, 2, 3, 4, and « yield “gene
trees” that differ in the placement of = such that in each of
the trees, it is a sibling of a different taxon. If this difference
is due to, say, hybrid speciation, then z is clearly a hybrid.

Fig. 3. A phylogenetic network with a soft in-polytomy at node y (b) resulting from the different placements of = in the four different gene trees (a).
This network with in-polytomy can be refined into nine different networks in which each node has at most two parents, by adding two nodes x; and

x5, and refining node y in all nine possible ways, as described in Table. 1.
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TABLE 1
The Possible Refinements of Node y in the Phylogenetic
Network in Fig. 3, Which Result in Networks in Which
Each Nodes Has at Most Two Parents

| Refinement | Parents of =, | Parents of za | Parents of y |

1 a,b c,d T1, X2
2 a,c b,d T1,x2
3 a,d b, c T1,x2
4 a,b x1,c¢ x2,d
5 a,b z1,d Ta2,C
6 a,c z1,b To,d
7 a,c r1,d T2,b
8 a,d xl,b Z2,C
9 a,d z1,c Ta,b

The phylogenetic network resulting from refinement (1) is shown in
Fig. 4.

Nonetheless, due to lack of phylogenetic signal (in this case,
it is massive extinction events or very “sparse” taxon
sampling), the phylogenetic network that reconciles these
four gene trees is one in which node y has in-degree 4, as
shown in Fig. 3b. This phylogenetic network may be refined
into nine different phylogenetic networks in which each
node has at most two parents, as described in Table 1. Fig. 4
shows the network resulting from refinement (1) in the table.
However, in the absence of any additional information, such
as divergence times, selecting one of these refinements over
the others is arbitrary. Using the terminology of [6], all these
nine networks are indistinguishable from a reconstruction
point of view, even though they are not isomorphic. Hence,
Moret et al. introduced the concept of reducing these
networks so as to eliminate the distinction among arbitrary
refinements that are not supported by the data. In this case,
the network in Fig. 3 is the reduced version of all these nine
networks. In any of the networks resulting from the
refinements described in Table 1, the set {z1, 25} of nodes
is referred to in [6] as a maximal convergent set. The network
reduction procedure basically entails identifying maximal
convergent sets in the network, and for each such set,
connecting its parent nodes directly to the maximal subtrees,
or clades, reachable from it, and eliminating all previously
existing paths from the nodes in the set to these clades. We
now review the formal definitions, as given in [6], of the
three concepts of a maximal convergent set, a reduced
network, and network indistinguishability.

Definition 2. Let N = (V, E) be a phylogenetic X-network. A
set U C V of internal nodes is convergent if 1) |U| > 2 and
2) every leaf reachable from some node in U is reachable from
all nodes in U. If there exists no convergent set U’ C V such
that U C U’, we say that U is a maximal convergent set.

The reduction procedure of [6] proceeds as follows,?> when
applied to phylogenetic X-network N = (V, E):

1. For each maximal subtree (or, clade) ¢ (that includes
no network nodes) of leaves X’ C X, rooted at node
r, create a new unique node h, and a new edge

2. The reduction procedure of [6] is, in fact, inaccurate, in that it does not
correctly capture all cases of indistinguishability. In this paper, we do not
attempt to fix the procedure, but rather review it as it was given in [6].

Fig. 4. Refinement (1) in Table 1 of the reduced phylogenetic network in
Fig. 3.

(pt, i), where p; is the parent of r;, delete the edge
(pt,7¢), and remove the subtree t. The node h;
becomes a symbolic leaf that represents the clade ¢.
Let the resulting network be N'.

2. Repeat the following two steps on N’ until no
change occurs:

a. For each convergent set U with leaf set Ly,
remove all vertices and edges on the paths from
a vertex in U to a leaf in Ly, including all
vertices in U and excluding vertices in Ly. For
any edge (z,v) for which v is in the deleted set,
replace it by a set of edges {(z,¢):¢¢€ Ly is
reachable from v}.

b. For each node w in the network, with
indeg(w) = outdeg(w) = 1, say with edges (u,w)
and (w, v), replace these two edges with a single
edge (u,v), remove node w, and remove any
duplicate edges. Repeat until no such node exists.

3. Reattach to each symbolic leaf h; the clade t by its
root ry.

Definition 3. Let N = (V, E, f) be a phylogenetic X-network.
Its reduced version, denoted by R(N), is the network obtained
from N by application of the reduction procedure.

In Fig. 4, the only clade ¢ found in Step 1 of the reduction
procedure is the one that contains one leaf x. Its root is
r; = = and its parent is p; = y. A new node h; is added, with
the new edge (y, h;), and the clade (z), along with the edge
from y to it, is removed. Then, nodes x;, x5, and y are
removed along with all edges incident with them. Four new
edges (a,hy), (b,h), (c,ht), and (d,h;) are then added.
Finally, the clade (z) is reattached to node h;, resulting in
the network shown in Fig. 3 (with the node &, labeled ).

We are now in a position to define network indis-
tinguishability.

Definition 4. Two phylogenetic networks N, and N, are
indistinguishable if their reduced versions R(Ny) and R(Ns)
are isomorphic.

For example, all nine phylogenetic networks resulting from
the node refinements described in Table 1 are (pairwise)
indistinguishable. To determine if two phylogenetic net-
works are indistinguishable, one can first reduce them, and
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then, compare their reduced versions. This requires a metric
for comparing reduced phylogenetic networks, and we
develop and present such a metric in the next section.

3 A METRIC ON THE SPACE OF REDUCED
PHYLOGENETIC NETWORKS

The results of Cardona et al. [8] show that the tripartition-
based measure introduced in [6] is not a metric on the space
of reduced networks. In this section, we introduce a metric
on the space of reduced phylogenetic X-networks that is
computable in time polynomial in the size of the networks.
We begin with the notion of node equivalence.

Definition 5. Given a phylogenetic X-network N = ((V, E), f),
we say that two nodes u,v € V are equivalent, denoted by
u=v,if

o w,veVyand f(u) = f(v), or
e Node w has k children wq,us,...,u,, node v has k
children vy, va, ..., v, and w; = v; for 1 <i < k.

Since in this paper, we are concerned with comparing
networks with identical leaf sets, the notion of node
equivalence can be extended to nodes from two different
networks, as established in the following equivalence mapping:

Definition 6. Let N1 = ((‘/1, El), fl) and NQ = ((‘/2, EQ), fg) be
two phylogenetic X-networks. We define the equivalence
mapping between Ny and No, h : Vi — 2", so that v € h(u),
for we Vi and v € Vs, if:

o u€L(M) ve LN, and fi(u) = fo(v), or
e Node w has k children wq,us,...,u,, node v has k
children vy, vo,. .., vy, and v; € h(u;) for 1 <i < k.

We have the following theorem:

Theorem 1. The equivalence of nodes as given in Definition 5 is
an equivalence relation.

The proof is straightforward and follows from the proper-
ties of set equality.

Observation 1. Let N = ((V,E),f) be a phylogenetic
X-network, and let u,v € V be two nodes where u = v. Then,
the set {u, v} is convergent.

We have the following lemma:

Lemma 1. Let N = ((V,E),f) be a reduced phylogenetic
X-network. If {u,v} CV is a convergent set, then u # v.

Proof. Based on the phylogenetic network reduction
procedure, all convergent sets in a phylogenetic network
are eliminated, except for one special type of convergent
sets: a set of two nodes {u, v}, where u is a network node
and v is the only child of . In this case, u and v are not
equivalent, since no child of v is equivalent to v. O

Given two phylogenetic networks N; = (V;,E;) and
Ny = (Vo, E5), and a node v; € Vi, we call the set h(vi)v;’s
mates in N, where h is the equivalence mapping, as given
in Definition 6. Notice that h(v;) is empty when v; has no
equivalent nodes in N,. Further, while in phylogenetic
trees, we always have |h(v;)| <1, it may be the case in
general phylogenetic networks that |h(vi)] > 1 for some

nodes. Since all nodes in h(v;) are pairwise equivalent, we
use h(v;) to denote an arbitrary node in the set, and NIL
when the set is empty.

Assume that V; = {v,vs,...,v,}. Then, the unique nodes
of Nj, denoted by U(N), are the set {v; : Vj < i, v; v,
1 <i<p}. We define U(N,) similarly. Further, for each
node v; € V;, we define ky,(v;) =|{ve Vi :v=wv;}|, and
KN, (u;) similarly for each node u; € V5. We define x(NIL) = 0
for any network N. When the context is clear, we drop the
subscript of k. We are now in position to define the measure
on pairs of phylogenetic X-networks.

Definition 7. Let Ny = (Vi, Ey) and No = (Va, Es) be two
phylogenetic X-networks. Then, m(Ny, Ny) equals

% Z max{0, k(v) — k(v')}

velU(Ny)

+ Z max{0, k(u) — k(u)} |,

ueU(Ny)

where v (u') is a node in Ny (Ny) that is equivalent to v (u),
and if no such equivalent node exists, then v' (u') is NIL.

The rationale behind the measure m is that it roughly
quantifies the number of rooted subnetworks that are in one
butnotboth of the networks. In the special case where the two
networks are two rooted trees T} and 15, then m(1, T5) yields
half the symmetric difference of their sets of rooted subtrees,
where two subtrees from 77 and 75 are equal if they are
isomorphic with respect to the leaf labels. Further, like the
Robinson-Foulds metric [1], this measure is very sensitive to
small perturbations in certain cases. For example, even
though the only difference between the two networks in
Fig. 1 is the orientation of a single edge, which is the edge
between the parents of leaves 2 and 3, we have m(N;, No) = 5.
One of the most commonly used distance metrics for
comparing phylogenetic trees, namely, the RF distance, has
a similar property. For example, for the two trees T} =
(a. (b, (c. (d. (e, /))))) and T5 = (£, (a. (b, (c. (d. ))))), whose
edit distance is 1, due to the different placement of the leaf f,
have RF distance of 3, when considered unrooted, and 4 when
considered rooted (and this effect can be further “drama-
tized” by considering larger such “caterpillar” trees).

We now establish properties of the measure m.

Lemma 2. If m(Ny,No) =0 for two reduced phylogenetic
networks Ny = (Vi, Ey) and Ny = (Va, Ey), then:

L [Vi| = |Val.
ZvleU(Nl) K(vr) = szeU(NQ) K (v2).

Proof. Let h; : Vi — Vs and hy : Vo — V} be two equivalence
mappings, as given by Definition 6. Since m(Ny, No) =0,
it follows that (v1) = k(hi(v1)) for all v; € V; and
k(v2) = K(h2(v2)) for all vy € V5. From this, both results
follow. a

Lemma 3. If m(Ni,N2) =0 for two reduced phylogenetic
X-networks Ny = ((Vi, Ey), f1) and Ny = ((Va, E»), f2), then
the equivalence mappings hy : Vi — Vo and hy : Vo — V) are
both isomorphisms.
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Proof. We show the proof for h; the proof for hs is
identical. By Lemma 2, it follows that |V;| =|V3|, and
from Observation 1 and Lemma 1, it follows that h(v;)
is defined and unique for each v; € V;. We now show
that if (u,v) € By, then (v/,v') € E;, where u' = hy(u)
and v = hy(v). Given that v’ = hy(u), it follows that u/
and u are equivalent, which, by the definition of
equivalence, implies that both « and v’ have equivalent
children. By Observation 1 and Lemma 1, and from the
assumption that m(Ny, Ny) = 0, N, has exactly one node
that is equivalent to v, which must be ¢'. Therefore,
(W, V) € Bs. 0

We now prove that the measure m satisfies property P1
stated in Section 1.

Lemma 4. Let Ny = (Vi, Ey) and Ny = (Va, E») be two reduced
phylogenetic X-networks. Then, Ny and N are isomorphic if
and only if m(Ny, N2) = 0.

Proof. For the “only if” direction, let h; : V} — V; be the
equivalence mapping as given in Definition 6. Mapping
hy is a bijection, since Ny and N, are isomorphic. Then,
based on Definition 7, we have m(N;, N;) = 0.

The “if” direction follows directly from Lemma 3. O

From the definition of the measure, property P2
follows immediately.

Lemma 5. For any pair of phylogenetic X-networks Ni and Ns,
we have m(Ny, No) = m(No, Ny).

The measure m(N;, N2) can be viewed as half the symmetric
difference of two multisets on the same set of elements,
where the multiplicity of element u in N; is Ky, (u), and
similarly, for N,. Since the symmetric difference defines a
metric on multisets [13], we have the following result:

Lemma 6. Let Ny, Ny, and N3 be three phylogenetic X-networks.
Then, m(Nl, NQ) -+ m(NQ, N3) > 777/(]\[17 N3)

From Lemmas 4, 5, and 6, we have the following main result:

Theorem 2. The measure m is a metric on the space of reduced
phylogenetic networks.

We have proved that the measure m, as given by
Definition 7, is a metric on the space of all reduced
phylogenetic X-networks. Finally, it is worth noting that
the metric is computable in polynomial time in the size of
the networks.

4 CONCLUSIONS

In this paper, we reviewed the concepts of phylogenetic
network indistinguishability and reduction, and devised a
polynomially-computable metric on the space of all
reduced phylogenetic networks. This fixes the problem
with the measure introduced in [6], which was later shown
not to be metric on the space of reduced phylogenetic
networks [8]. To determine whether two phylogenetic
X-networks are indistinguishable, the two networks are
first reduced, using the reduction procedure of [6]
(reviewed in Section 2), and the measure m is applied to
the two resulting networks.
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