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We report on a suite of algorithms and techniques that together provide a simulation flow for study-
ing the topological accuracy of methods for reconstructing phylogenetic networks. We imple-
mented those algorithms and techniques and used three phylogenetic reconstruction methods for a
case study of our tools. We present the results of our experimental studies in analyzing the relative
performance of these methods. Our results indicate that our simulator and our proposed measure
of accuracy, the latter an extension of the widely used Robinson-Foulds measure, offer a robust
platform for the evaluation of network reconstruction algorithms.

1 Introduction
Phylogenies, i.e., the evolutionary histories of groups of organisms, play a major role
in representing the interrelationships among biological entities. Many methods for
reconstructing such phylogenies have been proposed, but almost all of them assume
that the underlying evolutionary history of a given set of species can be represented
by a tree. While this model gives a satisfactory first-order approximation for many
families of organisms, other families exhibit evolutionary mechanisms that cannot be
represented by a tree. Processes such as hybridization and horizontal gene transfer
result in networks of relationships rather than trees of relationships. Although this
problem is widely appreciated, there has been comparatively little work on computa-
tional methods for estimating evolutionary networks.

A standard technique for assessing the performance of phylogenetic reconstruc-
tion methods is to use simulation studies. In such studies, a model topology (tree
or network) is generated, after which a sequence is evolved (including bifurcations
and non-treelike events) down the edges of the model topology according to some
chosen model of sequence evolution. Finally, a phylogeny is reconstructed on the
resulting set of sequences and its topology is compared to the model topology in or-
der to assess the quality, or topological accuracy, of the reconstruction. While many
simulation tools and accuracy measures are available for studying the performance of
phylogenetic tree reconstruction methods, such tools and measures are lacking in the
context of phylogenetic networks.
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We describe a collection of such techniques and quality measures: (i) a tech-
nique for generating random phylogenetic networks and simulating the evolution of
sequences on these networks, and (ii) measures to assess the topological accuracy
of the reconstructed networks. We implemented those techniques and conducted a
simulation study on one network reconstruction method, SplitsTree 1, and two
tree reconstruction methods, Neighbor-Joining and greedy Maximum Parsimony. We
assessed the performance of these methods on datasets generated in our simulation.

The rest of the paper is organized as follows. Section 2 provides some back-
ground on phylogenetic trees and describes the various steps involved in a simulation
study. Section 3 introduces our new techniques and reviews the existing reconstruc-
tion methods used in our study. Section 4 describes our experimental setup, while
Section 5 reports the results of our experiments and offers some remarks on the use-
fulness of our simulation flow.

2 Phylogenetic Trees
A phylogenetic tree on a set S of taxa is a rooted tree whose leaves are labeled by S.
Such a tree represents the evolutionary history of a set of taxa, where the leaves of
the phylogenetic tree correspond to the extant taxa and the internal nodes represent
the (hypothetical) ancestors. Many algorithms have been designed for the inference
of phylogenetic trees, mainly from biomolecular (i.e., DNA, RNA, or amino-acid) se-
quences2. Evaluating these algorithms cannot be done with real data alone, since we
typically do not know with high confidence the details of the “true” evolutionary his-
tory. Thus the standard means of performance evaluation for phylogenetic reconstruc-
tion methods is the simulation study, in which “model” phylogenies are constructed
using some chosen model of evolution, the “modern data” (found in the leaves of
the model phylogeny) are fed to the reconstruction algorithms, and the output of the
algorithms compared with the model phylogeny.

2.1 Model trees
Model trees are typically taken from some underlying distribution on all rooted binary
trees with n leaves; commonly used distributions include the uniform distribution and
the Yule-Harding distribution 3,4. Although we generate networks rather than trees,
we have based our network generation on the widely used model of birth-death evo-
lution, which we now briefly review in the context of tree generation.

To generate a random birth-death tree on n leaves, we view speciation and ex-
tinction events as occurring over a continuous interval. During a short time interval,
∆t, since the last event, a species can split into two with probability b(t)∆t or be-
come extinct with probability d(t)∆t. To generate a tree with n taxa, we begin this
process with a single node and continue until we have a tree with n leaves. (With
some nonzero probability some processes will not produce a tree of the desired size,
since all nodes could go “extinct” before n species are generated; we then repeat the
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process until a tree of the desired size is generated.) Under this distribution, a natural
length is associated with each edge, namely the time elapsed between the speciation
event that gave rise to that edge and the (speciation or extinction) event that ended
that edge. Thus birth-death trees are inherently ultrametric, that is, the branch lengths
are proportional to time.

2.2 Tree reconstruction methods
In our experiments, we used one network reconstruction method and two tree recon-
struction methods, neighbor-joining (NJ) and greedy maximum parsimony (MP).

• Neighor-joining 5 is the most popular distance-based method. For every pair
of taxa, it determines a score based on the pairwise distance matrix, then joins
the pair with the smallest score, building a subtree of two leaves whose root
replaces the two chosen taxa in the matrix. Pairwise distances for this new
“supertaxon” are then recalculated and the entire process is repeated until only
three nodes remain; these are then joined to form an unrooted binary tree.

• Maximum parsimony 6 is one of the two main optimization criteria used in
phylogenetic reconstruction. Because the problem is NP-hard, we use a simple
greedy heuristic 7,8, which adds taxa to the tree one at a time in some random
order—the placement of each new taxon is optimized locally.

2.3 Measures of accuracy
A commonly used measure of the topological accuracy of reconstructed trees is the
Robinson-Foulds (RF) value 9. Every edge e in an unrooted leaf-labeled tree T de-
fines a bipartition πe on the leaves (deleting e cuts the tree); we set C(T ) = {πe : e ∈
E(T )}, where E(T ) is the set of all internal edges of T . If T is a model tree and T ′

is a reconstructed tree, the false positives are the edges of the set C(T ′) − C(T ) and
the false negatives are those of the set C(T ) − C(T ′).

• The false positive rate (FP) is (|C(T ′) − C(T )|)/(n − 3).
• The false negative rate (FN) is (|C(T ) − C(T ′)|)(n − 3).

Since n−3 is the number of internal edges of an unrooted binary tree on n leaves, the
false positive and false negative rates are values in the range [0, 1]. The RF distance
between T and T ′ is simply the average of these two rates, FN+FP

2 .

3 Phylogenetic Networks
3.1 Hybridization and gene transfer
Two of the mechanisms that can result in non-tree evolution are hybridization and
horizontal gene transfer.

• In hybridization, two lineages recombine to create a new species, as symbolized
in Figure 1. The new species may have the same number of chromosomes as
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Figure 1: Hybridization: the network and its two induced trees
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Figure 2: Horizontal transfer: the network and its two induced trees

its parent (diploid hybridization) or the sum of the numbers of chromosomes of
its parents (polyploid hybridization).

• In horizontal gene transfer, genetic material is transferred from one lineage to
another, producing a new lineage, as symbolized in Figure 2.

In these two cases, the true evolutionary history is best represented by a network, or
directed acyclic graph, rather than by a tree.

Consider how an individual site evolves down a network. For diploid organisms,
each chromosome consists of a pair of homologs. In a diploid hybridization event,
the hybrid inherits one of the two homologs for each chromosome from each of its
two parents. Since homologs assort at random into the gametes (sex cells), each has
an equal probability of ending up in the hybrid. In polyploid hybridization, both ho-
mologs from both parents are contributed to the hybrid. Prior to hybridization, each
site on the homolog has evolved in a tree-like fashion, although due to meiotic re-
combination (exchanges between the parental homologs during gamete production),
different strings of sites may have different histories. Thus each site in the homologs
of the parents of the hybrid evolved in a tree-like fashion on one of the trees contained
inside (or, induced by) the network representing the hybridization event; see Fig-
ures 1(b) and 1(c). Similarly, in an evolutionary scenario involving horizontal transfer,
certain sites are inherited through horizontal transfer from another species, as in Fig-
ure 2(b), while all others are inherited from the parent, as in Figure 2(c). Thus, in each
of these two scenarios, each site evolves down one of the trees induced by the network.

3.2 Representation
Phylogenetic networks can be represented by rooted directed acyclic graphs, where
each node (except for the root) has indegree 1 or 2. Nodes of indegree 1 are called
tree nodes, whereas nodes of indegree 2 are called hybrid nodes. A hybrid node typ-
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ically takes its genetic material from both of its parents, whereas a tree node takes
its genetic material from its sole parent. The leaves of a network represent the ex-
tant taxa, and the internal nodes represent the hypothetical ancestral taxa. Whereas
phylogenetic trees have a standard representation, the Newick format (a form of pre-
order traversal), no such representation exists for phylogenetic networks. We thus
simply represent a network as a list of its edges, where each edge is defined by its two
endpoints and its weight (the expected number of changes along that edge).

3.3 Model networks
We propose a model for generating random networks based on birth-death model for
trees. A birth event in trees represents regular speciation; in networks, a birth event
can be either regular speciation or hybrid speciation. We describe first the general
model, then the restricted model used in our experiments.

Our model incorporates three types of events: regular speciation, hybrid speci-
ation, and extinction. (Lateral gene transfers can easily be added as well.) Hybrid
speciation events include diploid, allo-tetraploid, allo-hexaploid, allo-octaploid, and
auto-tetraploid hybridization. To generate a random network, we start with one node
(the root) and a pair of sequences (the two homologs of the chromosome at the root)
and initiate a regular speciation event, thus creating two lineages.

Each lineage is represented by an edge in the network. An edge e is defined by its
two endpoint nodes u and v. Associated with each node u is a time-stamp, t(u), and
associated with each edge e is a positive real number, w(e), indicating the expected
number of changes along that edge. Whenever a new lineage is created at node u,
the sequences at node u evolve along the newly created lineage, according to a given
model of evolution and to the w(e) value associated with that lineage. (The model
can be easily extended to support nonuniform rates among segments of the sequences
by associating with each edge a collection of values, one for each segment.)

At any time t, we consider all of the lineages that exist at that time. For each such
lineage l, and based on certain probabilities, either nothing happens, which means the
lineage l is continued, or one of three mutually exclusive events occurs:

Extinction: Lineage l becomes extinct and a leaf u is created with stamp t.
Speciation: A node u is created with stamp t and two new lineages are started from u.
Hybridization: Let H be the set of all lineages at time t and choose a lineage l′ ∈ H

to hybridize with l. (The choice of l′ depends on the ploidy level and number
of chromosomes of l′, as well as on the evolutionary distance between l and l′.)
When l and l′ hybridize, the two lineages are continued and a new, third lineage
arises from the hybrid speciation event. We allow each lineage to hybridize only
once at each point in time.

This process may generate a network with fewer than the desired number of leaves,
since all lineages might go extinct before enough lineages are created; in such a case,
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we can repeat the process until we obtain a network of the desired size or we can
conduct longitudinal studies in a population of networks of diverse sizes.

In our general model, the topology of the network and the sequences at each node
are generated together, in an interdependent manner. Such dependence is important
in networks, since the probability of a particular hybridization’s taking place depends,
among other things, on the actual genomes of the putative hybridization parents. In
the generation of trees, in contrast, simulation studies generally generate a tree topol-
ogy first, then use it to derive many different collections of sequences—the topology
does not depend on the sequences. Our restricted model follows the outline of our
general model, but assumes the same independence used in tree simulations and thus
begins by generating a network and then evolves the sequences down the completed
network. To generate a random network N with one hybrid, we start with a random
birth-death tree T , with times associated with its nodes. Let the time at the root be 0
and that at the last generated leaf be tl; let ti be a uniform variate in the interval [0, tl].
We identify all nodes in the tree with age not exceeding ti, but whose children have
ages exceeding ti: these nodes are the potential parents of the hybrid. We calculate
the pairwise evolutionary distances (the length of the tree paths) among all of these
nodes and choose the two parents with a probability inversely proportional to the evo-
lutionary distance between the two nodes. Hybridization thus occurs between nodes
that coexist in time and is more likely between more closely related ancestral taxa.
To generate p hybrid nodes, we repeat the process p times, thus allowing hybrids to
hybridize again. The networks thus generated are ultrametric; for each edge, we use
a uniform variate x in the range [− ln c, ln c] and multiply the edge length by ex to
deviate the networks from ultrametricity. (We call c the deviation factor.)

3.4 Simulating sequence evolution on networks
We based our sequence generation on the popular Seq-Gen10 tool, which takes a tree
in the Newick format and simulates the evolution of sequences along that tree under
a choice of models of evolution. Seq-Gen simulates the evolution of sequences on a
tree by placing a random sequence of the desired length at the root of the tree and then
evolving it down the tree using the specified model of evolution and other parameters,
including scaling factor, codon-specific corrections, gamma rate heterogeneity, etc.

Our modified version, Seq-Gen2, takes a network as an input; it assumes diploid
hybridization and uses networks produced by our restricted model. The main change
is that Seq-Gen2 evolves a pair of sequences, A and B, corresponding to the two ho-
mologs of the chromosome. The two sequences A and B are evolved independently
down the tree, using the specified model of evolution and the other parameters. In
the case of tree nodes, both the A and B sequences are evolved in exactly the same
manner as they evolve on a tree. In the case of a diploid hybrid node, the node inherits
the A or B sequence from one parent and the A or B sequence from the other parent.
There is no evolution on the edges between the parents of the hybrid and the node at
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the origin of the hybrid, since, at the scale of evolution, hybridization is essentially
instantaneous. The output of Seq-Gen2 is a set of pairs of sequences at the leaves.

4 Measuring the Distance Between Two Phylogenetic Networks
We want to measure the error between a model network N1 and an inferred network
N2; this measure, m(N1, N2), must be nonnegative and symmetric and satisfy two
properties:

• N1 and N2 are the same network exactly when m(N1, N2) = 0.
• If N1 and N2 are trees, then m(N1, N2) reduces to the RF measure.

These are very mild requirements; in particular, they do not define a metric, since we
have not included any form of triangle inequality.

We propose two measures. Our first measure, based on a graph model, seeks to
extend the RF measure by viewing the networks as extensions of trees. (Removing a
chosen subset of edges from the network leaves a tree; the number of such subsets,
however, can be very large.) This approach leads to a sophisticated view of the rela-
tionship between two networks, but the resulting measure is too expensive to compute
exactly and tends to overemphasize the importance of guessing just the right number
of non-tree events. Our second measure seeks to extend the RF measure by viewing
the networks in terms of partitions. Just as the RF measure counts the number of com-
patible bipartitions, our new measure counts the number of compatible tripartitions.
This second measure is easy to define and compute, is very closely related to the RF
measure, and can also support a weighting scheme.

Let N1 have p hybrid nodes and N2 have q hybrid nodes. Then N1 induces a set
T1 of at most 2p trees and N2 induces a set T2 of at most 2q trees. Figure 1 shows a
network with one hybrid node and its two induced trees. Define the complete bipartite
graph GN1,N2 = (T1 ∪ T2, E) (which has an edge e = (u, v) between every u ∈ T1

and v ∈ T2) and assign to each edge e = {u, v} a weight w(e), the RF value between
the two trees that correspond to nodes u and v. Our first measure can now be defined.
Definition 1 The error rate between N1 and N2 is the weight of the minimum-weight
edge-cover of GN1,N2 .
The minimum-weight edge cover of a graph G = (V, E) is a subset E ′ ⊆ E such
that E′ covers V and the sum of edge weights,

∑
w(e)∈E′ w(e), is minimum. This

measure clearly satisfies our two requirements. Although the minimum-weight edge-
cover problem is solvable in polynomial time, the size of the bipartite graph is expo-
nential in the number of hybrid nodes, so that computing the error rate may require
exponential time. In practice, because hybridization is a rare event, the true network
will have relatively few hybrid nodes, so that good reconstructions can be evaluated
quickly. More damaging is the fact that this measure places a very strong emphasis
on reconstructing networks that have the right number of hybridization events—small
errors in that number dominate even very large errors in the choice of other edges.
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This shortcoming leads us to design a measure based directly on partitions. Let
N be a network, leaf-labeled by a set of taxa S, and e be an edge in N , where u is the
source of e, and v is the target of e (i.e., u is a parent of v). Each edge e ∈ N induces
a tripartition of S, defined by the sets

• A(e) = {s ∈ S : s is reachable from the root of N only via v}.
• B(e) = {s ∈ S : s is reachable from the root of N via at least one path passing

through v and one path not passing through v}.
• C(e) = {s ∈ S : s is not reachable from the root of N via v}.

For each edge e, the three sets A(e), B(e) and C(e) are weighted; the weight of an
element in A(e) or C(e) is 0 (or any fixed constant) and the weight of an element
s ∈ B(e) is the maximum number of hybrid nodes on a path from v to s, where v
is the target of edge e. Two weighted sets S1 and S2 are interchangeable, denoted
by S1 ≡ S2, whenever they contain the same elements and each element has the
same weight in both sets. Two edges e1 and e2 are compatible, denoted by e1 ≡ e2,
whenever we have A(e1) ≡ A(e2) and B(e1) ≡ B(e2) and C(e1) ≡ C(e2).

We define the false negative rate (FN) and false positive rate (FP) between two
networks N1 and N2 as follows.

• FN(N1, N2) = |{e1 ∈ N1 :6 ∃e2 ∈ N2 s.t. e1 ≡ e2}|/|N1|.
• FP (N1, N2) = |{e2 ∈ N2 :6 ∃e1 ∈ N1 s.t. e1 ≡ e2}|/|N2|.

Definition 2 The error rate between N1 and N2 is the average of FN(N1, N2) and
FP(N1, N2).
This measure clearly satisfies our two conditions and is computable in time polyno-
mial in the size of the two networks.

5 Experimental Settings
In order to obtain statistically robust results11,12, we used 30 runs, each composed of
a number of trials (a trial is a single comparison), computed a mean outcome of each
run, and studied the mean and standard deviation of these runs. The standard devi-
ation of the mean outcomes in our studies was generally negligible for NJ and MP
(except for very small numbers of taxa), and only rarely larger for SplitsTree.
We graphed the average of the mean outcomes for the runs, but omitted the standard
deviation from the figures for clarity.

We ran our studies on random networks generated using the technique described
earlier. These networks had diameter 2; in order to obtain networks with other diame-
ters, we scaled the edge lengths by factors of 0.01, 0.05, 0.1, 0.5, 1, and 2, producing
networks with diameters of 0.02, 0.1, 0.2, 1, 2, and 4, respectively. To deviate the
networks from ultrametricity, we used a deviation factor of 4. We generated networks
with 0, 1, 2, 3, 4, and 5 hybrids, for 10, 20, 40 and 80 leaves—one network for each
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combination of diameter, number of taxa, and number of hybrids. We then evolved
sequences on these networks using the K2P+Gamma13 model of evolution (we chose
α = 1 for the shape parameter and set the transition/transversion ratio to 2). We used
a fixed factor14 of 1 for distance correction and used sequence lengths of 25, 50, 100,
250, and 500. We used our Seq-Gen2 to evolve DNA sequences down the network
under the K2P+Gamma model of evolution. The datasets we generated consisted of
pairs of sequences, as described; however, the phylogenetic methods under study take
datasets with only a single sequence per taxon. Therefore, from each sequence dataset
that we generated, we created two sets: one that consisted of the A sequence of each
taxon, and one that consisted of concatenation of the A and B sequences of each
taxon. Thus, the effective sequence lengths that we looked at were 25, 50, 100, 250,
and 500, when the A sequences were used, and 50, 100, 200, 500, and 1000, when the
concatenation of A and B was used. We used PAUP* 15 for the greedy MP method
and the SplitsTree software package1.

6 Results and Discussion

We present two sets of results: one set compares the output of SplitsTree with
the true network in terms of the number of hybrid nodes created, while the second
compares the topological error rate of the three methods. Our first finding is that
SplitsTree tends to reconstruct more hybrid nodes than are present in the true
network, as illustrated in Figure 3 (the correct answer is on the oblique line). The
effect decreases as the number of true hybrids increases—indeed, the worst-case in-
stances for SplitsTree are trees.

Our second set of figures compares the FN and FP error rates (as defined in
Section 4) of SplitsTree, NJ, and MP as a function of the number of true hy-
brids (Figure 4), the sequence length (Figure 5), the number of taxa (Figure 6), and
the scaling factor (Figure 7). The two tree reconstruction methods are nearly indistin-
guishable throughout our experiments (with a slight advantage of MP over NJ in some
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Figure 3: The number of hybrids in the output of SplitsTree vs. the true number of hybrids, for 80 taxa
at a scaling of 0.5.
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Figure 4: The FN and FP error rates of the three methods as a function of the number of hybrids in the
model network. Scaling=0.5, concatenated sequences, 40 taxa, and sequence length=1000.
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Figure 5: The FN and FP error rates of the three methods as a function of the sequence length. Scaling=0.5,
concatenated sequences, 80 taxa, and 1 hybrid in the model networks.
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Figure 6: The FN and FP error rates of the three methods as a function of the number of taxa. Scaling=0.1,
concatenated sequences, sequence length=1000, and no hybrids in the model networks.

cases). As expected from the results of many previous experimental investigations,
their error rate grows slowly with the number of taxa, decreases slowly with increas-
ing sequence length, and grows very slowly with increasing scaling factor. Since
these methods never create hybrid nodes, their error rate as a function of the num-
ber of true hybrids must grow linearly in p, where p is the number of true hybrids, a
growth clearly demonstrated in Figure 4.

The accuracy of SplitsTree suffers from its overestimates of the number of
hybrid nodes: every hybrid not present in the true network affects all edges from
which the hybrid is reachable. Thus Figure 4 confirms our findings from Figure 3:
as the number of true hybrid nodes increases, SplitsTree infers a more accurate
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Figure 7: The FN and FP error rates of the three methods as a function of the scaling. Concatenated
sequences, sequence length=1000, 40 taxa, and 3 hybrids in the model networks.

number of such nodes and its error rate does not noticeably increase with the number
of hybrids. (Note that it is the FP rate that varies; the FN rate appears unaffected
by the number of hybrids.) So far, our measure of topological accuracy behaves as
desired. However, its behavior for SplitsTree in Figures 5 and 6 is, at first sight,
surprising: one might expect the same trends as for the two tree reconstruction algo-
rithms. Once again, however, this behavior accurately reflects the characteristics of
the reconstructions. The mild increase of the FP rate in Figure 5 is due to the increas-
ing number of incompatible splits (the decision criterion used by SplitsTree) due
to an increasing number of characters. The sharp decrease in the FP rate in Figure 6 is
due to the normalization by the increased number of taxa and the fact that the error is
mostly attributable to excess hybrid nodes, whose number does not strongly depend
on the number of taxa.

Overall, our proposed (second) measure of topological accuracy gives results that
follow qualitative expectations, neither over- nor underemphasizing the importance of
hybrid events.

7 Conclusions
We have presented a suite of tools that forms the basis of a simulation flow for the
study of network reconstruction methods. The paucity of tools in this area, coupled
with the universal recognition that tree models are too limited in many areas of the
Tree of Life, makes the development of measures, algorithms, and tools an urgent task
in phylogenetic research. While our test suite (generators and measures) is tailored
for network reconstruction, our results at this point do not allow us to conclude much
about network reconstruction methods—we could only test one existing method (oth-
ers we tried would not run properly) and our range of experimental data in this study
was somewhat limited. Yet, our test suite shows that it is possible to devise and use
simulations for the assessment of reconstruction methods for phylogenetic networks.
Our error measure has the advantage that it does not handle independently tree errors
and network characteristics, avoiding the pitfall of having to assign relative weights
or priorities to the two; if it does appear to favor trees slightly over networks, that is
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but a reflection of Occam’s razor: hybridization events should be used only sparingly
to explain data features otherwise explainable under a tree model.
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