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ABSTRACT
Absolute fast converging phylogenetic reconstruction

methods are provably guaranteed to recover the true
tree with high probability from sequences that grow only
polynomially in the number of leaves, once the edge
lengths are bounded arbitrarily from above and below.
Only a few methods have been determined to be absolute
fast converging; these have all been developed in just the
last few years, and most are polynomial time. In this paper,
we compare pre-existing fast converging methods as well
as some new polynomial time methods that we have
developed. Our study, based upon simulating evolution
under a wide range of model conditions, establishes that
our new methods outperform both neighbor joining and the
previous fast converging methods, returning very accurate
large trees, when these other methods do poorly.
Contact: usman@cs.utexas.edu

Introduction
Performance studies of phylogenetic methods focus upon
how accurately methods can reconstruct the unrooted
underlying leaf-labeled tree (called the “topology”) under
various model conditions. Recent research (Erdos et al.,
1997, 1999; Huson et al., 1999; Warnow et al., 2001) has
developed a new class of phylogenetic methods, called
fast converging methods, which provably recover the true
tree topology with high probability given only polynomial
length sequences. Earlier experimental studies have
shown that some of these methods can recover signifi-
cantly more accurate trees than standard methods, such
as neighbor joining (NJ) (Sautou and Nei, 1987)– perhaps
the most popular polynomial time method in phylogeny
reconstruction. Since some of these fast converging meth-
ods are also polynomial time, they potentially provide a
powerful alternative to NJ.

Our first simulation study confirms the observations that
current fast converging methods (Csűrös, 2001; Huson
et al., 1999) can outperform NJ; however, our study also
suggests they outperform NJ only for very large and evo-

lutionarily divergent datasets. Under other conditions, the
fast converging methods are much less accurate than NJ.
With this in mind, we designed additional methods, some
of which are provably fast converging. The best of these
new methods are significantly more accurate than the pre-
vious fast converging methods; not only do they perform
as well as NJ in our experiments, but they outperform
NJ on smaller and less evolutionarily divergent datasets.
Many of our new methods are polynomial time, and while
slower than the NJ method, they still complete within a
few minutes, even for datasets with hundreds of taxa.

The rest of the paper is organized as follows. First, we
provide a review of the terminology that is used in the
paper and a discussion of the theoretical results about
fast-convergence. Second, we outline the experimental
methodology. Third, we present our initial simulation
study comparing two fast converging methods to NJ.
Fourth, we discuss the development and performance
analysis of our new methods. Finally, we address the
performance of the methods on large trees and conclude
with a discussion of the consequences of this study and
suggestions for future research. In particular, we discuss
how some of these methods can be used to provide
excellent approximations to the maximum likelihood (or
maximum parsimony) problems.

Terminology & Review
Models: The two models we use for the simulation
study are the Jukes-Cantor model (JC) and Kimura
2-Parameter (K2P) model with a gamma distribution
(K2P+Gamma). The JC and the K2P model (without
the gamma distribution) are special cases of the General
Markov (GM) model (Steel, 1994b).

The Jukes-Cantor (JC) model (Jukes and Cantor, 1969)
is the simplest Markov model of biomolecular sequence
evolution. In that model, a DNA sequence (a string
over �p�]�������
����� ) at the root evolves down a rooted
binary tree � . The assumptions of the model are: (1)
the sites (i.e., the positions within the sequences) evolve
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independently and identically, (2) if a site changes state
it changes with equal probability to each of the remaining
states, and (3) the number of changes of each site on an
edge � is a Poisson random variable with expectation �A�8�Z�
(this is also called the “length” of the edge � ). A JC tree is
completely defined by the pair �h�
���P�A�8�Z�?��� .

The Kimura 2-Parameter (K2P) model (Kimura, 1980)
is a generalization of the JC model. As with JC, each site
evolves down the tree under the Markov assumption, but
there are two different types of nucleotide substitutions:
transitions (mutations that change � to � or vice-versa,
and � to � or vice-versa) and transversions (all other mu-
tations). The probability of a given nucleotide substitution
depends on the edge and upon the type of substitution.
A K2P tree is defined by the triplet �h�����P�,�8���?���?���Z�P����� ,
where ���Z�P��� is the transition/transversion ratio; in our
experiments, we fix this ratio to � (a standard setting).

These models describe how a single site (i.e. a position
within the sequence at the root) evolves down the tree,
and it is assumed that the sites evolve identically and
independently. However, we can also assume that the sites
have different rates of evolution, and that these rates are
drawn from a known distribution. One popular assumption
is that the rates are drawn from a gamma distribution with
shape parameter � . We use ���¡  for our experiments
under K2P+Gamma. With these assumptions, we can
specify a K2P+Gamma tree just by the pair �h�
���P�,�8���?��� .
Measures of accuracy: There are many ways of
measuring error between trees, but when the trees are
all constrained to be binary, the Robinson-Foulds (RF)
measure (Robinson and Foulds, 1981) is the preferred
technique. Each edge in a tree induces a bipartition on the
set of leaves of the tree. The RF error is the proportion of
bipartitions that are unique to each tree (i.e., the RF score
is the normalized symmetric difference of the trees). When
this value is 0, the topology of the trees are identical.

Statistical Performance Issues: We say that a
phylogeny reconstruction method ¢ is statistically con-
sistent under a model of evolution if, for every model tree�h�
���P�A�8�Z�?��� and every £¥¤§¦ , there is a sequence length¨

such that ¢ recovers the true tree with probability at
least  
©ª£ , when the method is given sequences of length
at least

¨
generated on the tree � . Real data are of limited

length. Therefore, the length
¨

of the sequences affects the
performance of the method ¢ significantly. The conver-
gence rate of a method ¢ is the rate at which it converges
to 100% accuracy as a function of the sequence length.

Absolute Fast Convergence: The largest and
smallest edge-lengths clearly affect the sequence length
needed by any method. So, we will examine the con-
vergence rate issue by fixing arbitrarily the largest and
smallest “edge-lengths” (see above). Once these bounds

are fixed, we can consider the sequence length a method
needs in order to recover the tree topology exactly with
high probability. This sequence length “requirement”
clearly grows with the number of leaves in the tree.
Intuitively, we will say that a method is “fast-converging”
if the sequence length that suffices in order to obtain the
true tree with high probability is bounded from above by
a polynomial in « . We now define this concept formally.

Since we examine several different models of evolution
(e.g. JC and K2P+Gamma), we will let ¬ denote the
assumed model of evolution. We parameterize this model
as follows:

DEFINITION 1. Let ­%��® ¯ ¦ . Define ¬±°�² ³ ����h�����P�,�8���?���
´Zµ¶�j·¥¸¹�h�f�s�º­J»¼�A�8�Z�º»½®�� .
We now define absolute fast convergence:

DEFINITION 2. A phylogenetic reconstruction method¾
is (absolute) fast-converging (afc) for the model ¬

if, for all positive ­%��®B�;£ , there is a polynomial ¿ such
that, for all �h�
���P�A�8�Z�?���À· ¬ °�² ³ , on a set Á of «
sequences of length at least ¿A�Â«7� generated on � , we
have Ã3ÄYÅ ¾ �ÆÁÇ� �=�ÉÈ,¤Ê *©Ë£ .
Previous Fast Converging Methods: Several afc
methods have been developed in the last years (see
(Erdos et al., 1997, 1999; Huson et al., 1999; Csűrös,
2001; Warnow et al., 2001)). Of these, HGT-FP (Csűrös,
2001) and DCM*-NJ (Warnow et al., 2001) are the most
promising. We now briefly describe these methods.
HGT+FP: The Harmonic Greedy Triplets + Four Point
Condition is a polynomial method which builds a tree by
sequential insertion of taxa, using a quartet-based metric.
DCM*-NJ: DCM*-NJ is one of the “Disk-Covering
Methods” (see also (Huson et al., 1999,?; Warnow et al.,
2001)). DCM*-NJ is not polynomial time, since it in-
volves solving an NP-hard problem, although polynomial
time versions of DCM*-NJ in which the NP-hard opti-
mization problem is approximated by a greedy heuristic
perform well in practice (Huson et al., 1999). We build
upon the design strategy of DCM*-NJ in order to develop
our new afc methods (described below). Hence we will
also describe briefly the two-phase structure of DCM*-NJ.

The input to DCM*-NJ is an «§ÌÊ« matrix Í�ÎzÏ of
distances between each pair of sequences in the input.
Phase 1: For each Ðª·Ñ�pÍUÎzÏP� , compute a binary tree �¶Ò .
Let Ó��Ô�v�¶Ò]´�Ð"·/�pÍUÎzÏp��� . (In order to ensure that each�¶Ò is binary, we use heuristics for refining incompletely
resolved trees. We note that the specific heuristic we used
in Huson et al. (1999) differs from the one we use in the
new afc methods in this paper.)
Phase 2: Select the best tree from Ó .

The method used in the second phase of DCM*-NJ is
the Short Quartet Support (SQS) method, which we now
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define. Let � be a tree on a set of taxa Á , and let ÕÖ�h�3�
denote the set of trees induced by � on each set of four
leaves; hence a quartet tree �×·ÊÕÖ�h�f� if and only if the
subtree of � induced by the taxa of � equals � .

DEFINITION 3. Let Í be a distance matrix on a setÁ of taxa. For a given quartet Ð on taxa from Á , defineÍ�ØÆÙUÚÜÛZ�ÂÐU�{�ÝÚÜÙ�Þ¶�pÍUÎ ² ÏËßº�pØ?�ÆàY�âáãÐU��ä In other words,Í�ØÆÙUÚ Û �ÂÐU� is the maximum distance between the taxa
of Ð . For Õ , a fixed set of quartets, we can define the setÕjåæ�Ê�pÐ�·JÕç´�Í�ØÆÙUÚÜÛZ�ÂÐU� �éèf� .

DEFINITION 4. Let � be a fixed tree leaf-labeled
by a set Á of taxa, Õ a fixed set of quartets on Á ,
and Í the distance matrix on Á . The short quartet
support of � with respect to Õ , denoted �PÐZ�U�h�
��Õ{� , isÚÜÙ�Þ¶�pèÊ´SµYà×»¼èf��Õ�Ï
êKÕ×�h�f�?��ä

We now present a high-level version of SQS:

PROCEDURE SQS �ÂÓë��ÁÇ�
ì For each set of four taxa from Á , compute

the NJ quartet Ð ; let í be the set of all such
quartets.ì Return � Î ·îÓ such that �pÐ��U�h� Î �Zíc� is
maximum; if more than one such tree exists,
return the one with the smallest index Ø .

Note that the short quartet support of a tree, as defined,
is a fairly crude estimate of the quality of the tree;
surprisingly, it is sufficient to ensure that DCM*-NJ is
absolute fast converging. In fact, if we had picked any
tree with maximum support, the result would have been a
provably absolute fast converging method.

Experimental Design
Simulation Study: Simulation studies are the stan-
dard technique used in phylogenetic performance studies
(see, for example, (Huelsenbeck and Hillis, 1993;
Huelsenbeck, 1995; Kuhner and Felsenstein, 1994)). In
a simulation study, a DNA sequence at the root of a
model tree (i.e. tree topology with branch lengths) is
evolved down the tree under some assumed stochastic
model of evolution, such as the K2P or JC models. This
process generates a set of sequences at the leaves of the
tree. The sequences are then given to the phylogenetic
reconstruction methods, with each method producing a
tree for the set of sequences. These reconstructed trees
are then compared against the model tree for topological
accuracy. The process is repeated many times in order to
obtain a statistically significant test of the performance of
the methods under these conditions.

In our study, we have used model trees based upon
biological datasets as well as randomly generated model
trees. We have also explored performance under two

different models: the JC model, and the K2P+Gamma
model. Finally, unlike most previous studies ((Bininda-
Edmonds et al., 2001; Csűrös, 2001; Hillis, 1996; Huson
et al., 1999) are some of the few exceptions), we have
examined performance for a wide range of numbers of
taxa, ranging from moderately large (50 taxon) trees to
very large (1600 taxon) trees. Due to space constraints,
we will only present a subset of our data, though we will
discuss the variations we see in the results as well.

In order to obtain statistically robust results, we fol-
lowed the advice of McGeoch (McGeoch, 1992) and
Moret (Moret, 2001) and used a number of runs, each
composed of a number of trials (a trial is a single com-
parison), computed the mean outcome for each run, and
studied the mean and standard deviation over the runs
of these events. This approach is preferable to using the
same total number of samples in a single run, because
each of the runs is an independent pseudorandom stream.
With this method, one can obtain estimates of the mean
that are closely clustered around the true value, even if the
pseudorandom generator is not perfect.

The standard deviations of the mean outcomes in our
studies is very low, less than ¦Yä�¦�� . This is only two
percent, since the possible values range from 0 to 1. We
graph the average of the mean outcomes for the runs, but
omit the standard deviation from the figures.

Model Trees: We examined two types of model trees.
The first type is random model trees, and the second type
is biologically based model trees. Both are used in the
phylogenetic performance literature.
Random Model Trees: For each number « of taxa, we
randomly generated model tree topologies from the uni-
form distribution on binary « leaf trees (where the leaves
are labeled by  Zäïäïä�« ). For each edge of each tree topology,
we generated a random number (from the uniform distri-
bution) between   and  v¦�¦ , and used that number as �A�8�Z� ,
the expected number of changes on a random site. We then
scaled each such “base” model tree by values between
0.01 and 0.0001. This process produces trees with average
branch lengths of 0.5 and 0.005. Due to space constraints
we will only show a subset of these experiments.
Biologically based Model Trees: A biologically based
model tree is a rooted tree with branch lengths that are
inferred on the basis of a phylogenetic analysis of a real
dataset. We have used several biologically based model
trees in our studies. In each case, we used the model tree
as a “base”, and scaled the edge lengths of the tree up and
down to produce a family of model trees, in order to test
the performance of different methods under various con-
ditions. Due to space limitations, we report on the perfor-
mance for scalings selected so that NJ has only 20% error
on sequences of length 1000. The trees we studied are:
500 RBCL TREE: Our first biological model tree (see
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Fig. 1. The rbcL 500-taxon tree obtained by parsimony
analysis by Rice et al. (Rice et al., 1997) of a collection of
500 rbcL gene (DNA) sequences.

Fig. 2. The Archaea 107-taxon tree is from the Ribosomal
Database Project (et al., 2000) and was constructed using
Weighbor (Bruno et al., 2000).

Figure 1) is based upon a parsimony analysis of a collec-
tion of 500 rbcL gene (DNA) sequences (the parsimony
analysis was performed by Rice et al. (Rice et al., 1997)).
This is the same model tree used by Csűrös in (Csűrös,
2001). In addition to the scaling factor described above,
we also used the setting from (Csűrös, 2001).
107 ARCHAEA TREE: The second biological model tree
is the Archaea 107 taxon tree (see Figure 2) obtained
from the Ribosomal Database Project (et al., 2000). It was
constructed using Weighbor (Bruno et al., 2000) from
RNA sequences. This tree proved more challenging than
the larger rbcL tree for many of the methods studied (see
the New Methods section and the Very Large Datasets
section).
85 CRENARCH TREE: We also studied performance on
the Crenarch 85 taxon tree from (et al., 2000), constructed

using Weighbor (Bruno et al., 2000) from RNA sequences.
The performance on this tree echoed that on the Archaea
tree, and we omit the details of those experiments (see the
New Methods section for further discussion).
140 EUKARYOTE TREE: This 140 taxon tree is a subtree
of the Eukaryote 2055 taxon tree from (et al., 2000), con-
structed using maximum likelihood from RNA sequences.
As with the 85 Crenarch tree, the performance on this tree
echoed that on the Archaea tree, and we omit the details
of those experiments (see the New Methods section for
further discussion).

Experimental platform: Machines: The experiments
were run over a period of approximately three months
on approximately 280 different processors running the
Debian Linux operating system. These included two clus-
ters: the phylofarm cluster of 9 dual-processor machines,
which are dedicated to the design and study of algorithms
for phylogenetic reconstruction, and the SCOUT cluster:
a cluster of 132 processors (16 4-way IBM Netfinity
servers with 533-MHz Xeon processors and 1GB mem-
ory/box, 32 2-way IBM Netfinity servers with 733-MHz
Pentium III processors and 512MB memory/box, 2
2-processor 733-MHz Netfinity boxes acting as file and
checkpoint servers). The SCOUT cluster is funded by
NSF EIA-9985991 and shared among five researchers. In
addition, we also had nighttime use of approximately 150
Pentium III processors located in public undergraduate
laboratories.
Software: We used the program Seq-Gen (Rambaut and
Grassly, 1997) to randomly generate a DNA sequence for
the root and evolve it through the tree under the JC model
of evolution and the K2P + Gamma model. We calculate
evolutionary distances appropriately for each model (see
(Li, 1997)).

The software for DCM-NJ was written by Daniel
Huson. To calculate the maximum likelihood scores
of the trees we used PAUP* 4.0 (Swofford, 1996). To
visualize the trees, we used the splitstree package
(Huson, 1998). For job management across the cluster
and public laboratory machines, we used the Condor
software package (Condor, 2001). We generated the rest
of this software (a combination of C++ programs and Perl
scripts) explicitly for these experiments. The software for
HGT+FP was provided by Csűrös.

Comparing AFC methods to NJ
Our first study focuses on the two most promising ab-
solute fast converging methods under these two models
of evolution. JC was chosen since the original studies
(Csűrös, 2001) showing the HGT+FP method outper-
formed NJ on large trees with high evolution were done
under this model of evolution. K2P+Gamma was chosen
due to its popularity in many recent phylogenetic studies.
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Fig. 3. DCM*-NJ vs. NJ vs. HGT+FP on the rbcL 500-taxon
tree, under the JC model. Average branch length is 0.264

Comparison to NJ: We compared DCM*-NJ and
HGT+FP to the popular neighbor joining (NJ) method of
Saitou and Nei (Sautou and Nei, 1987). NJ is statistically
consistent under the General Markov model of evolu-
tion. We do not know if NJ is absolute fast converging
under these models (the only proven upper bound for its
convergence rate is exponential (Atteson, 1999)).
Experimental Procedure: We compared these methods
on a large number of model trees, both biological and
random. We generated 50 sets of sequences of length
8000 under JC and then ran experiments on the first 200,
600, 1000, 2000, 4000 and 8000 sites of the same set of
sequences.
Results & Discussion: The relative performance between
the three methods is quite clear. We show only our results
for the rbcL 500 tree experiments, due to space limitations.

On the rbcL 500 tree under JC (see Figure 3), our
results confirm Csűrös’ results (Csűrös, 2001) on the
same tree, and show that HGT+FP can outperform NJ on
this tree given long enough sequences, but is worse than
NJ on shorter sequences. DCM*-NJ and HGT+FP both
outperform NJ at sequence lengths above 4000, but NJ is
better than DCM*-NJ and HGT+FP for sequence lengths
below 4000. A comparison between DCM*-NJ and
HGT+FP shows that DCM*-NJ has better performance
than HGT+FP at all sequence lengths.

On the other model trees, the comparison was similar:
HGT+FP was less accurate than DCM*-NJ, and the rela-
tive performance between NJ and these methods depended
upon the number of taxa and the rate of evolution: as these

parameters increased, NJ’s performance decreased until
the other methods were better than it (see the Very Large
Datasets section for more details).
Summary: We conclude that these afc methods, HGT+FP
and DCM*-NJ, can outperform NJ, but not consistently;
they are often worse than NJ. In general it seems that
they obtain improved performance only under restrictive
conditions. In particular, even for those trees (mostly large
and evolutionarily divergent trees) for which they do offer
an advantage, the advantage seems to be limited to very
long sequences.

New Methods
In this section we describe our new phylogeny reconstruc-
tion methods. Our objective here is three-fold: first, the
methods should be polynomial time and preferably as fast
as NJ. In all cases, the methods must be fast enough that
speed is not a consideration. Second, the methods should
outperform both NJ and the previous fast-converging
methods (with respect to topological accuracy) in an
interesting portion of the parameter space. (For our
concerns, we would like the new methods to outperform
NJ and the previous fast converging methods on trees with
just a few hundred taxa.) And lastly, the methods should
not be worse than NJ or the previous fast-converging
methods (with respect to topological accuracy) except in
uninteresting portions of the parameter space (where NJ
itself gets very poor reconstructions, such as missing 50%
of the edges). Our earlier studies, including the ones we
presented above, show that all the earlier afc methods
(e.g. DCM*-NJ and HGT+FP) fail the last criterion.

Our new methods differ from DCM*-NJ in two ways.
First, we obtain binary trees in Phase 1 in the following
way. Given an unresolved tree, we assign DNA sequences
to internal nodes using the Fitch maximum parsimony
algorithm. Then we apply NJ to the neighbors around each
unresolved node in order to resolve the node. Secondly,
and more importantly, we modify the second phase, in
which we select the best tree from the set Ó of trees �v�5ÒV�
(one for each Ð{·��pÍUÎ�ÏP� .

The importance of using a good technique to select
a tree from a set of trees has been observed by others
as well: the original HGT method also was based upon
a two-phase structure in which a collection of trees is
constructed, and then a best tree selected from the set.
In (Csűrös and Kao, 1999), they used the Minimum
Evolution Criterion to select the best tree from the set, and
observed that it produced significantly better trees than
their earlier techniques. In this section, we define three
additional selection techniques:
ì Threshold Support (TS): We define the threshold

support of a tree � , denoted by �?���h�3� , as follows:
�?���h�f�7�§ß��pèÑ·ª�pÍUÎzÏP�3´�ÕjåJê¼Õ×�h�f�?��ßðä
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ì Maximum Parsimony (MP). The maximum parsi-
mony score of a tree is obtained easily in polynomial
time, see (Fitch, 1971).ì Maximum Likelihood (ML):. The Maximum Likeli-
hood score of a tree is not easily computed, although
heuristics exist (Steel, 1994a). We use the reasonably
efficient heuristics for ML in PAUP* (Swofford, 1996).

See (Hillis et al., 1996) for a discussion of both maximum
parsimony and maximum likelihood as selection criteria.
Each of these techniques thus produces a different two-
phase phylogenetic method, which we call DCM-NJ+SQS
(this is DCM*-NJ), DCM-NJ+TS, DCM-NJ+MP, and
DCM-NJ+ML, with the obvious meaning. Of these four
phylogenetic methods, only DCM-NJ+SQS and DCM-
NJ+TS are provably afc. While DCM-NJ+ML is also
statistically consistent, we do not have any bound on its
convergence rate; DCM-NJ+MP is not even statistically
consistent under the simplest models (Felsenstein, 1978).

Comparing DCM-NJ Variants
Model Trees and Parameters: We studied the
methods under all the biological trees and several random
trees of up to �Z¦�¦ taxa. Due to space limitations, we
report only on the performance on two biologically based
trees: the 107 Archaea tree, and the 500 rbcL tree. The
performance on the other trees was similar. We scaled
the edge lengths of each tree up to create challenging
conditions, with the average branch length of the 500 rbcL
tree set to 0.278, and the average branch length of the 107
Archaea tree set to ¦Yäñ �ò�ó .
Dataset Generation: For each model tree and param-
eter setting, we generated 50 sets of sequences each of
length 16000 under the K2P+Gamma model. We then ran
the experiments on the first 200, 400, 600, 1000, 2000,
4000, 8000 and 16000 sites on the same set of sequences.

Modification to DCM-NJ Methods: In order to
decrease running time, we modified the new methods to
produce only a small subset of the possible trees, by
restricting the set of Ð�·�ÍUÎ�Ï to only 50 values, rather than
the entire set of ô{�Â«¶õV� distances. Our brief experiments
suggest that reducing the number of thresholds can
reduce the topological accuracy, but generally not by
much; furthermore, it greatly reduces the running time.
Hence improved topological accuracy can be obtained by
examining more, or all, of the different thresholds.

Discussion: A comparison between DCM-NJ+TS and
DCM-NJ+SQS on the 107 taxon tree (see Figure 4)
reveals that DCM-NJ+TS is an improvement over DCM-
NJ+SQS. Other experiments (not shown) show DCM-
NJ+TS consistently performs at least as well as DCM-
NJ+SQS.

The distinction in performance between the four meth-
ods is noticeable on most of the trees (see Figure 4).

Fig. 4. Comparing variants of DCM-NJ on the Archaea 107-
taxon tree under the K2P+Gamma model. Average branch
length is 0.143.

Figure 5 shows good relative performance by all methods.
In summary, it is clear that the optimal methods are DCM-
NJ+MP and DCM-NJ+ML, followed by DCM-NJ+TS,
and then by DCM-NJ+SQS. Furthermore, DCM-NJ+MP
and DCM-NJ+ML are indistinguishable in most tests.

DCM-NJ+ML/MP vs. NJ
We then compared our best methods, i.e., DCM-NJ+MP
and DCM-NJ+ML, to neighbor joining (NJ) and to
HGT+FP. In all our experiments DCM-NJ+MP and DCM-
NJ+ML were more accurate than the other methods.
See, for example, Figure 6 and Figure 7. A comparison
between DCM-NJ+MP and DCM-NJ+ML is interesting.
In almost all our experiments they performed essentially
the same (the small improvement obtained in Figure 4 is
the greatest advantage we saw of ML over MP). This is
interesting since DCM-NJ+ML is statistically consistent,
and possible afc, while DCM-NJ+MP is neither.

Very Large Datasets
The earlier experiments show that DCM-NJ+ML (and
DCM-NJ+MP) outperform both NJ and the earlier afc
methods. However, we did not look at very large trees,
that is, trees of more than 1000 taxa. In this section, we
ask “How will topological errors grow with increasing
numbers of taxa, if we fix the average branch length and
the total sequence length available?” This question thus
addresses the feasibility of inferring the tree-of-life, where
the overall evolutionary distance and the number of taxa

6
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Fig. 5. Comparing variants of DCM-NJ on the rbcL 500-taxon
tree under the K2P+Gamma model. Average branch length is
0.278.

will both be large. We examine this by fixing the average
branch lengths to two “nice” values.
Parameters: We generated 100 random tree topologies
of 50, 100, 200, 400, 800 taxa and 10 topologies of 1600
taxa with random branch lengths selected so that the
average branch lengths were either ä�¦�ö or ä�¦�¦�ö . For each
tree topology we then generated sequences of length 1000
under K2P+Gamma model of evolution. Due to time
constraints we could use only 10 runs for 1600 taxa.
Methods: We compared the error rates of DCM-NJ+MP,
DCM-NJ+SQS, NJ and HGT+FP on each dataset.
Discussion: In both experiments (the low branch length
case, see Figure 8, and the moderate branch length case,
see Figure 9), certain trends are clear. As the number
of taxa increases, we see an increase in the error rate
(the y-axis is the average RF error) for the NJ tree, but
evidently no increase in error for HGT+FP nor for the two
variants of DCM-NJ we study (i.e., DCM-NJ+MP and
DCM*-NJ). The relative performance between HGT+FP
and the DCM-NJ variants is clear: the best method is
DCM-NJ+MP, followed by DCM*-NJ, and then followed
by HGT+FP. The relative performance between NJ and
the other methods depends upon the number of taxa and
the rate of evolution. For the low branch-length trees, NJ
outperforms HGT+FP until 1600 taxa, though the curve
suggests that beyond this number NJ will be worse than
HGT+FP. However, except for the 50 taxon case, NJ
is worse than the DCM-NJ variants. For the moderate
branch-length trees, NJ is much worse than the DCM-NJ

Fig. 6. DCM-NJ+ML vs. NJ vs. HGT+FP on the Archaea 107-
taxon tree under the K2P+Gamma model. Average branch
length is 0.143.

variants throughout, and even worse than HGT+FP for the
majority of the range.

The figures suggest that the relative advantage obtained
by using DCM-NJ+MP will increase as the number of
taxa increases. This means that truly large phylogenetic
analyses which might not be feasible under NJ may be
feasible using methods such as DCM-NJ+MP.

Finally, we wish to address the surprisingly flat curve for
the error rates of HGT+FP, DCM*-NJ and DCM-NJ+MP.
A flat error rate increase is impossible, as we know math-
ematically that all methods will have an increase in error
as the number of taxa increases, due to the information
content. We make, therefore, the following conjecture.
Suppose that NJ’s convergence rate is actually polynomial
in « rather than exponential. (This would not contradict
the theory in (Atteson, 1999), which is just an upper
bound.) If this were so, then DCM*-NJ, DCM-NJ+TS,
and perhaps even DCM-NJ+ML would have convergence
rates that are bounded from above by a polynomial in÷ �Âøïù�úÇøñù�úº«7� (see (Erdos et al., 1997, 1999; Huson et al.,
1999)) on random trees. The error curve of such a method
might very well seem to be initially flat, as these do.

Conclusions
In all our experiments, DCM-NJ+MP and DCM-NJ+ML
were at least as accurate as all the other methods we
tested. This was true for all sequence lengths, all model
trees, and all scalings. Furthermore, DCM-NJ+MP and
DCM-NJ+ML were more accurate than the popular NJ

7
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Fig. 7. DCM-NJ+ML vs. NJ vs. HGT+FP on the rbcL 500-
taxon tree under the K2P+Gamma model. Average branch
length is 0.278.

method on a large portion of the parameter space. No
earlier polynomial time method has been able to provide
this kind of performance advantage, to our knowledge.
Furthermore, these methods are polynomial time, and
while slower than NJ, they are still fast enough to be
acceptable. For example, DCM-NJ+MP completes its
analysis on a 107 taxon tree in under three minutes.

Future Research

There are several future research directions that we
plan to take. First, the new methods that incorporate
biologically significant optimization methods, such as
maximum likelihood (ML) and maximum parsimony
(MP), as part of the selection phase can be used as very
fast heuristics for obtaining good initial starting points for
ML or MP searches. Our experiments (data not shown
due to space limitations) shows that these methods return
much better MP and ML trees than the NJ tree returns,
and almost as quickly. These optimization problems are
of major interest to systematists, and these methods (or
similar methods) may be very helpful.

More generally, the methods we have developed are
all specific examples of a general phylogenetic-method
booster. In fact, this research is part of an ongoing project
to explore the power of the DCM-style methods, which
began with (Huson et al., 1999).

Fig. 8. DCM-NJ+MP vs. DCM*-NJ vs. NJ vs. HGT+FP
on random trees under the K2P+Gamma model. Sequence
length is 1000. Average branch length is 0.005.
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