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Abstract. Phylogenies play a major role in representing the interrelationships
among biological entities. Many methods for reconstructing and studying such
phylogenies have been proposed, almost all of which assume that the underly-
ing history of a given set of species can be represented by a binary tree. Al-
though many biological processes can be effectively modeled and summarized in
this fashion, others cannot: recombination, hybrid speciation, and horizontal gene
transfer result innetworks, rather than trees, of relationships.
In a series of papers, we have extended the maximum parsimony (MP) criterion
to phylogenetic networks, demonstrated its appropriateness, and established the
intractability of the problem of scoring the parsimony of a phylogenetic network.
In this work we show the hardness of approximation for the general case of the
problem, devise a very fast (linear-time) heuristic algorithm for it, and implement
it on simulated as well as biological data.

1 Introduction

Phylogenetic networks are a special class ofdirected acyclic graphs(DAGs) that mod-
els evolutionary histories when trees are inappropriate, such as in the cases of horizontal
gene transfer (HGT) and hybrid speciation [26, 30, 27]. Fig. 1(a) illustrates a phyloge-
netic network on four species with a single HGT event. In horizontal gene transfer
(HGT), genetic material is transferred from one lineage to another, as in Fig. 1(a). In
an evolutionary scenario involving horizontal transfer, certain sites (specified by a spe-
cific substring within the DNA sequence of the species into which the horizontally
transferred DNA was inserted) are inherited through horizontal transfer from another
species (as in Figure 1(c)), while all others are inherited from the parent (as in Figure
1(b)). Thus,each site evolves down one of the trees induced by (or, contained in) the
network. Similar scenarios arise in the cases of other reticulate evolution events (such
as hybrid speciation and interspecific recombination).

? The authors appear in alphabetical order.



2 Jin, Nakhleh, Snir, and Tuller

A B C D

X Y

A B C D A B C D

(a) (b) (c)

Fig. 1. (a) A phylogenetic network with a single HGT event fromX to Y . (b) The underlying
organismal (species) tree. (c) The tree of a horizontally transferred gene.

HGT plays a major role in bacterial genome diversification (e.g., see [7, 8, 19, 20]),
and is a significant mechanism by which bacteria develop resistance to antibiotics (e.g.,
see [9]). Therefore, in order to reconstruct and analyze evolutionary histories of these
groups of species, as well as to reconstruct the prokaryotic branch of the Tree of Life,
developing accurate criteria for reconstructing and evaluating phylogenetic networks
and efficient algorithms for inference based on these criteria is imperative. A large
number of publications have been introduced in recent years about various aspects of
phylogenetic networks; e.g., see [12, 30, 32, 11, 17, 18, 1, 31] for a sample of such
papers in the last two years, and [26, 27] for detailed surveys.

In this work, we consider themaximum parsimony(MP) criterion, which has been
in wide use for phylogenetic tree inference and evaluation. Roughly speaking, inference
based on this criterion seeks the tree that minimizes the amount of evolution (in terms of
number of mutations). In 1990, Jotun Hein proposed using this criterion for inferring the
evolution of sequences subject to recombination. Recently, Nakhlehet. al. formulated
the parsimony criterion for evaluating and inferring general phylogenetic networks [31],
and we have recently demonstrated its appropriateness on both simulated and biological
datasets [21, 22]. Applying the parsimony criterion for phylogenetic networks involves
solving thebig and thesmall parsimony problems, referred to as theFTMPPN and
PSPNproblems, respectively, in [31]. In [21] the small problem (scoring the parsimony
of a given network) was proved to be NP-hard and a heuristic algorithm was devised. A
recent work by Nguyenet. al. [33] provided a hardness result for a related, yet different,
version of the small parsimony problem.

In this paper we devise a very fast (linear-time) heuristic algorithm, with very good
empirical performance, for the PSPN problem. Further, we show that for a restricted,
yet realistic, class of phylogenetic networks, our algorithm gives a polynomial time
3-approximation for the problem. Moreover, we show that although the theoretical ap-
proximation ratio is not very promising, the algorithm does give very good results in
practice compared to the exact algorithm.

2 Parsimony of Phylogenetic Networks

Preliminaries and DefinitionsLet T = (V,E) be a tree, whereV andE are thetree
nodesand tree edges, respectively, and letL(T ) denote its leaf set. Further, letX be
a set of taxa (species). Then,T is a phylogenetic tree overX if there is a bijection
betweenX andL(T ). Henceforth, we will identify the taxa set with the leaves they are
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mapped to, and let[n] = {1, .., n} denote the set of leaf-labels. A treeT is said to be
rootedif the set of edgesE is directed and there is a single distinguished internal vertex
r with in-degree0. We denote byTv the subtree rooted atv induced by the tree edges.
A function λ : [n] → {0, 1, .., Σ − 1} is called astate assignment functionover the
alphabetΣ for T . We say that function̂λ : V (T ) → {0, 1, .., Σ − 1} is an extension
of λ on T if it agrees withλ on the leaves ofT . In a similar way, we define a function
λk : [n] 7−→ {0, 1, .., Σ − 1}k (in applications of the methodology,k corresponds to
the sequence length) and an extensionλ̂k : V (T ) 7−→ {0, 1, .., Σ − 1}k. The latter
function is called alabelingof T . We writeλ̂k(v) = s to denote that sequences is the
label of the vertexv. Theith site is ann-tuple where thejth coordinate is the state of
theith site of species (leaf)j.

Given a labelingλ̂k, let de(λ̂k) denote the Hamming distance between the two
sequences labeling the two endpoints of the edgee ∈ E(T ).

A phylogenetic networkN = N(T ) = (V ′, E′) over the taxa setX is derived from
T = (V,E) by adding a setH of edges toT , where each edgeh ∈ H is added as
follows: (1) split an edgee ∈ E by adding new node,ve; (2) split an edgee′ ∈ E by
adding new node,ve′ ; (3) finally, add a directedreticulation edgefrom ve to ve′ . It is
important to note that the resulting network must be acyclic [30].

We extend the notion ofTv to networks as follows. For a networkN and a node
v ∈ V (N), let Nv be the graph induced by all the nodes reachable fromv. Finally,
we denote byT (N) the set of all trees contained inside networkN . Each such tree is
obtained by the following two steps: (1) for each node of in-degree2, remove one of
the incoming edges, and then (2) for every nodex of in-degree and out-degree1, whose
parent isu and child isv, remove nodex and its two adjacent edges, and add a new
edge fromu to v.

Further, Phylogenetic networks must satisfy additional temporal constraints [30].
First, N should be acyclic (genetic material flows only forward in time). Second,N
should satisfy additional temporal constraints, so as to reflect the biological fact that the
donor and recipient of a horizontally transferred gene must co-exist in time. Since at the
scale of evolution HGT events are instantaneous in time, a reticulation edge between
two points dictates that they correspond to the same chronological time. This in turn
implies that ifx andy are the two endpoints of an HGT edge and their time-stamp ist,
then there cannot be an HGT edge between a nodez at timet′ < t and a nodew at time
t′′ > t. Note that this condition is not guaranteed by the acyclicity condition4. See [30]
for a formal description of the temporal constraints on phylogenetic networks.

2.1 Parsimony of Phylogenetic Networks

We begin by reviewing the parsimony criterion for phylogenetic trees.

Problem 1.Parsimony Score of Phylogenetic Trees (PSPT)

4 It is important to note that, while acyclicity must be satisfied by all phylogenetic networks, the
other temporal constraints may be violated, due to extinction or incomplete taxon sampling,
for example.
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Input: A 3-tuple(S, T, λk), whereT is a phylogenetic tree andλk is the labeling
of L(T ) by the sequences inS.
Output: The extension̂λk that minimizes the expression

∑
e∈E(T ) de(λ̂k).

We define the parsimony score for(S, T, λk), pars(S, T, λk), as the value of this
sum, andpars(S, T, λk, i) as the value of this sum for sitei only. In other words,
pars(S, T, λk) =

∑
1≤i≤k pars(S, T, λk, i). It is easy to see that the optimal value is

obtained by optimal solutions for every site1 ≤ i ≤ k. Problem 1 has a polynomial
time dynamic programming type algorithm originally devised by Fitch [10] and later
extended by Sankoff [36]. The algorithm finds an optimal assignment (i.e.,λ̂k) for each
site separately.

Since Fitch’s algorithm is a basic building block in this paper, we hereby describe it.
As mentioned above, the input to the problem is a treeT and a single characterC = λ1.
The algorithm finds the optimal assignment to internal nodes ofT , in two phases: (1)
assigning values to internal nodes in a bottom-up fashion, and (2) eliminating the values
determined in the previous phase in a top-down fashion. Specifically, phase (1) proceeds
as follows: for a nodev with childrenv1 andv2 whose valuesA(v1) andA(v2) have
been determined,

A(v) =
{

A(v1) ∩A(v2) if A(v1) ∩A(v2) 6= ∅
A(v1) ∪A(v2) otherwise.

Phase (2) proceeds as follows: for a nodev whose parentf(v) has already been pro-
cessed:

B(v) =
{

σ ∈ A(v) ∩A(f(v)) if A(v) ∩A(f(v)) 6= ∅
σ ∈ A(v) otherwise.

The algorithm above applies only to binary trees. Nonetheless, a straightforward exten-
sion to arbitraryk-degree trees can be easily achieved. We now prove a lemma that will
be useful later.

Lemma 1. LetT be a tree andC a single character over the alphabetΣ. Letx be the
number of internal nodesv s.t. |A(v)| > 1 by applying Fitch’s algorithm on(T,C).
Thenx is less than twiceS∗—the parsimony score ofT overC.

Proof. We prove the lemma by induction onl, the length of the path from rootr to the
closest leaf. Obviously, we are interested only in cases where|A(r)| > 1 in the first
phase. Forl = 1, T is a cherry5 with two leavesv1 andv2 with A(v1) ∩ A(v2) = ∅
and the lemma follows. Assume correctness forl = k and we prove forl = k + 1. We
divide the proof into two cases:

– A(v1) ∩ A(v2) = ∅: There must be additional mutation fromv and the lemma
follows.

5 A cherry is a rooted tree with three nodes: the root, and two leaves which are children of the
root.
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– |A(v1)| > 1 and|A(v2)| > 1 : In this case there might be no mutation fromv to
either of his children (e.g.A(v1) = {A,C,G} andA(v2) = {A,G}). Let x1 and
x2 be the number of nodesw in Tv1 and inTv2 resp. with|A(w)| > 1, andS∗

1 and
S∗

2 the optimal scores forTv1 andTv2 resp. It is clear thatS∗ = S∗
1 + S∗

2 , however
by the assumption,x = x1 + x2 + 1 < x1 + 1 + x2 + 1 ≤ 2(S∗

1 + S∗
2 ) and the

assumption follows.

Problem 1 was extended to phylogenetic networks in [14, 15, 31], and its quality as a
criterion for reconstructing and evaluating networks was established on both synthetic
and biological data in a series of papers [31, 21, 22]

Definition 1. Parsimony Score of Phylogenetic Networks (PSPN)

Input: A 3-tuple (S, N, λk), whereN is a phylogenetic network andλk is the
labeling ofL(N) by the sequences inS.
Output: The extension̂λk that minimizes the expression∑

1≤i≤k

[
minT∈T (N)pars(S, T, λk, i)

]
.

3 Hardness of approximation of the PSPN problem

In [23], we proved that the PSPN problem is NP-hard by a reduction from the max-2-sat
problem. By [13], there is a constantζ such that there is no polynomial time algorithm
for max-2-sat with performance ratio better thanζ, i. e. there areP1 andP2 such that
gap −max − 2sat[P1, P2]6 is NP-hard (see [16] for the definition of gap problems).
Thus by the reduction in [23] there is a constantζ

′
such that there is no polynomial time

algorithm forPSPN , andgap − PSPN [4 ∗ |C| − P2 + |U |, 4 ∗ |C| − P1 + |U |] is
NP-hard.

Corollary 1. There is a constantζ ′ such that there is no polynomial time algorithm for
PSPN with performance ratio better thanζ ′.

Corollary 2. The PSPN problem is hard to approximate even for networks of bounded
degrees, where each node has at most 20 children.

This result follows from the fact that thegap − max − 3sat problem, when every
variable appears 5 times, is hard.

It is important to note that our reduction in [23] generates networks with no more
thanoneHGT between any pair of edges. Thus the hardness of approximation results
hold also for such networks. In the next section we provide an approximation algorithm
for a network with up to one7 HGT between each pair of edges.

6 In agap−max− 2sat[A, B] problem, whereA < B, a YES-instance is a formula in which
at leastB clauses are satisfiable, and a NO-instance is a formula in which at mostA clauses
are satisfiable. If the number of satisfiable clauses is strictly greater thanA and strictly smaller
thanB, then either answer (YES or NO) can be given.

7 The algorithm can be generalized to the case where the number of HGTs between each pair of
edges is bounded by some constantc > 1. This will increase the approximation ratio.
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4 A Linear-time Algorithm

Our linear time algorithm builds on the improved heuristic of [21] for the PSPN prob-
lem, outlined in Fig. 2. The algorithm is based on the fact that there always exists a
lowest reticulation edgein a phylogenetic network that satisfies the temporal constraints
described in [30]. A reticulation edgee = (u → v) is calleda lowest reticulation edge
(or just a lowest edge) if there is no reticulation edge (other thane) adjacent to any node
in eitherTu or Tv.

ExactPSPN(N=(V’,E’))

1. If N is not a tree
(a) Find a lowest reticulation edgee = (u→ v) in N ;
(b) Lete′ be the edge betweenv and its ancestral node on the tree edge;
(c) By Fitch’s algorithm, compute the optimal assignmentA of u and

v;
(d) If A(u) ∩A(v) = ∅ then

return(V ′, E′ \ e);
(e) else ifA(u) ⊆ A(v) then

return(V ′, E′ \ e′);
(f) else

i. opt = pars(ExactPSPN(V ′, E′ \ e));
ii. A(u)← A(v); // updatev′s values

opt′ = pars(ExactPSPN(V ′, E′ \ e′));
iii. if opt′ < opt return(V ′, E′ \ e′); else return(V ′, E′ \ e).

2. else returnFitch(N).

Fig. 2.The improved heuristic algorithm.

The algorithm in Fig. 2 checks in each step a lowest reticulation edge of the network.
It calculatesA(u) andA(v) by Fitch’s algorithm. In a case where¬((A(u)

⋂
A(v) =

∅) ∨ (A(u) ⊆ A(v))) the algorithm considers recursively (and separately) both the
reticulation edge and the (alternative) tree edge (i.e. the network with and the network
without (u → v)) . The running time of the algorithm is exponential with the number
of such cases.

Our new linear-time algorithm is similar to the exact heuristic algorithm described
in Fig. 2 in its recursive style and the search for a lowest reticulation edge at every invo-
cation. However, in contrast, whenever we are unsure of a mutation along that edge, we
just take it. Formally, we remove the exponential component from the exact algorithm
PSPN and perform step (1e) in any case the condition at step (1d) is not satisfied. The
algorithm, Linear-PSPN(N ), is outlined in Fig. 3.

Claim. Let E(N) be the set of reticulation and tree edges inN . Then the algorithm
terminates and runs in timeO(E(N)).

4.1 A3-Approximation Ratio

An algorithmA for a minimization problemP with optimal solutionopt(P ) (or just
opt for short), is a polynomial timeα-approximation algorithm ifA runs in polynomial
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Linear-PSPN(N = (V, E))

1. If N is not a tree
(a) Find a lowest reticulation edgee = (u→ v) in N ;
(b) Lete′ be the edge betweenv and its ancestral node on the tree edge;
(c) By Fitch’s algorithm compute the optimal bottom up assignmentA

to Tu andTv, A(Tu) andA(Tv);
(d) If A(u) ∩A(v) = ∅ then

λ̂1 = Linear-PSPN(V, E \ e);
(e) else

λ̂1 = Linear-PSPN(V, E \ e′);
(f) returnλ̂1.

2. Continue first phase of Fitch on the tree N without changing internal
labels that have already determined.

3. Perform second phase of Fitch on the tree N.
4. Return the resultant fully labelled tree.

Fig. 3.The Linear-PSPN algorithm.

time and the score of the solution returned byA, A(P ), satisfies

A(P ) ≤ α · opt(P ).

We now show that if the number of reticulation edges emanating from a tree edge is
at most one, Linear-PSPN yields a3-approximation algorithm. The analysis relies on
Lemma 1 above.

The technique we use is based on thelocal ratio technique which is useful for ap-
proximating optimization covering problems such as vertex cover, dominating set, min-
imum spanning tree, feedback vertex set and more [4, 2, 3]. The technique recursively
solves local sub-problems until a solution is found. The way the local sub-problems are
solved determines the approximation ratio. In general, we decompose the network into
two networks and show that twoseparateoptimal solutions to the networks are a lower
bound to an optimal solution to the complete network.

Theorem 1. If the maximum number of reticulation edges emanating from a tree edge
is 1, then the approximation ratio ofLinear − PSPN is 3.

Proof. We start with a central observation to give a lower bound on the optimal score
of a given network.

Observation 1 Let e = (u → v) be a lowest reticulation edge in a networkN . Let
N ′ = N \ Tv be the network obtained by pruningTv from N (including the edges
leading tov). Thenopt(N) ≥ opt(N ′) + opt(Tv).

Proof. Simply take the treeT with the assignment to internal nodesA(T ) yielding
opt(N) as an upper bound onopt(N ′) + opt(Tv).

Corollary 3. If we find anα approximation to bothopt(N ′) andopt(Tv), we find anα
approximation toN .
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We now show how the 3-ratio is obtained. At any local step, we remove a subtree
that was solved optimally and contains no reticulation edges (or contains only such
edges that did not incur a mutation). This subtree is connected to the rest of the network
by a (u → v) reticulation edge withA(v) ⊂ A(u). Let Tv be the tree removed from
the rest of the network. Such a reticulation edge might incur an additional mutation.
However, note that|A(u)| > 1. Now, since there is no reticulation edge enteringTu

that can reduce the number of mutations, there exists an optimal solution withTu as
a subgraph. By Lemma 1 the number of mutations inTu is at least half the number of
nodesu′ with |A(u′)| > 1. By our assumption, every edge entering such a nodeu′ gives
rise to at most one extra mutation. We simply change that extra mutation onu′ and the
theorem follows. The rest of the network is solved recursively.

5 Experimental Results

We implemented the approximation algorithm and evaluated both its accuracy and ex-
ecution time through experiments on both simulated and biological datasets. We per-
formed experiments on a 2.4 GHz Intel Pentium 4 PC. Accuracy of the approximation
algorithm was measured as the difference of the parsimony scores computed by the
approximation algorithm and the exact algorithm normalized by the parsimony score
computed by the exact algorithm, presented as percentage. Execution times of both the
approximation algorithm and the exact algorithm were measured and speedups of the
approximation algorithm over the exact algorithm were reported.

Simulated DatasetsFor the simulated datasets, we first used ther8s tool [35] to gen-
erate a random birth-death phylogenetic tree on 20 taxa. Ther8s tool generates molec-
ular clock trees; we deviated the tree from this hypothesis by multiplying each edge in
the tree by a number randomly drawn from an exponential distribution. The resulting
tree was taken as the species tree. The expected evolutionary diameter (longest path be-
tween any two leaves in the tree) was 0.2. A model phylogenetic network was generated
by adding 5 HGT edges to the model tree.

Based on the model network, we used the Seq-gen tool [34] to evolve 26 datasets of
DNA sequences of length 1500 down the “species” tree and DNA sequences of length
500 down the other tree contained inside the network (the one that exhibits all HGT
events). Both sequence datasets were evolved under the K2P+γ model of evolution,
with shape parameter1 [25]. Finally, we concatenated the two datasets.

Biological DatasetsWe have included experimental results on three biological datasets
we previously studied [22]. The first biological dataset is the rubisco generbcL of
a group of 46 plastids, cyanobacteria, and proteobacteria, which was analyzed by Del-
wiche and Palmer [6]. This dataset consists of 46 aligned amino acid sequences (each of
length 532), 40 of which are from Form I of rubisco and the other 6 are from Form II of
rubisco. The first 21 and the last 14 sites of the sequence alignment were excluded from
the analysis, as recommended by the authors. The species tree for the dataset was cre-
ated based on information from the ribosomal database project (http://rdp.life.uiuc.edu)
and the work of [6]. The second dataset consists of the ribosomal proteinrpl12e of
a group of 14 Archaeal organisms, which was analyzed by Matte-Tailliezet al. [28].
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This dataset consists of 14 aligned amino acid sequences, each of length 89 sites. The
authors constructed the species tree using Maximum Likelihood, once on the concate-
nation of 57 ribosomal proteins (7,175 sites), and another on the concatenation of SSU
and LSU rRNA (3,933 sites). The two trees are identical, except for the resolution of
thePyrococcusthree-species group; we used the tree based on the ribosomal proteins.
The third dataset consists of the ribosomal protein generps11of a group of 47 flower-
ing plants, which was analyzed by Bergthorssonet al. [5]. This data set consists of 47
aligned DNA sequences, each with 456 sites. The authors analyzed the 3’ end of the
sequences separately; this part of the sequences contains 237 sites. The species tree was
reconstructed based on various sources, including the work of [29] and [24].

5.1 Results and Analysis

We evaluated the performance of the algorithms in terms of accuracy and speedup.
Since the running time of the exact algorithm for computing the parsimony score of
a phylogenetic network is affected by the number of trees that it considers inside the
network, we also plotted the average numbers of trees that the exact algorithm consid-
ers, so that we understand the gains in speed for the approximation algorithm, which
considers exactly one tree in all cases.

Fig. 4 shows the results of the 26 simulated datasets for networks with up to 6 HGT
edges. The results were collected from 1000 sampled valid networks for each case of
the multiple gene transfers. HGTs in each network are distributed differently. Overall,
the approximation algorithm is very accurate with the statistical mean being about 1%
different in the parsimony scores computed, compared with the exact algorithm. All
parsimony scores computed by the approximation algorithm were within 3.5% of the
optimal scores. For the networks with less then 5 HGTs, the approximation algorithm
achieves about the same accuracy of the exact algorithm in most of the networks. The
figure also shows that the approximation algorithm is up to 70% faster than the ex-
act algorithm, with statistical mean around 32%. The improved execution time of the
approximation algorithm came from the fewer number of trees created for computing
parsimony score. Fig. 4 also shows the average number of trees that the exact algorithm
considers. The average number of trees created increases as the number of HGTs in-
creases. For networks with 6 HGTs (simulated dataset), the average number of trees
can be up to 2.

For the rubisco generbcL dataset, We tested networks with up to 8 HGTs. In each
case of the multiple gene transfers, we selected 500 valid networks with HGTs being
placed differently. As the results in Fig. 4 show, the approximation algorithm is almost
as accurate as the exact algorithm (within 0.5%; see the small boxes or the lower quartile
for 7-HGT case at the bottom). Very few outliers exist across different numbers of
HGTs. On the other hand, the approximation algorithm performs very efficiently. It
performs up to a factor of 7 faster than the exact algorithm. The statistical mean of the
improvement increases as the number of HGTs increases, with an exception in the case
of 8 HGTs, where the sampled networks are probably not distributed well enough.

Similar trends are observed with the other two biological datasets, as shown in
Fig. 4. The figures show that the statistical mean of the difference in accuracy is al-
most 0 in all cases, which indicates that the approximation algorithm computes almost
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Fig. 4. Results for the four datasets. Accuracy is computed as((MPapprox −
MPexact)/MPexact), and shown as percentage. Speedup is computed as the execution
time of the exact algorithm divided by the that of the approximation algorithm. The right column
shows the average number of trees created for computing parsimony by the exact algorithm.

identical scores as the exact algorithm, in most cases. The speedup factors, and their
correlations to the numbers of trees the exact algorithm considers, are also shown, and
they show improvements up to a factor of 1.5. We expect that for larger datasets the
gains in performance (speedup) will be even more pronounced. If one hopes to detect
HGT events in large prokaryotic groups, for example, such a speedup is essential.
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