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ABSTRACT

Motivation: Phylogenies—the evolutionary histories of groups of

organisms—play a major role in representing relationships among bio-

logical entities. Although many biological processes can be effectively

modeled as tree-like relationships, others, such as hybrid speciation

andhorizontal gene transfer (HGT), result innetworks, rather than trees,

of relationships. Hybrid speciation is a significant evolutionary mecha-

nism in plants, fish and other groups of species. HGT plays amajor role

in bacterial genome diversification and is a significant mechanism by

which bacteria develop resistance to antibiotics. Maximum parsimony

is one of the most commonly used criteria for phylogenetic tree infer-

ence. Roughly speaking, inference based on this criterion seeks

the tree that minimizes the amount of evolution. In 1990, Jotun Hein

proposed using this criterion for inferring the evolution of sequences

subject to recombination. Preliminary results on small synthetic data-

sets. Nakhleh et al. (2005) demonstrated the criterion’s application to

phylogenetic network reconstruction in general and HGT detection in

particular. However, the naive algorithms used by the authors are inap-

plicable to largedatasetsdue to their demandingcomputational require-

ments. Further, no rigorous theoretical analysis of computing the

criterion was given, nor was it tested on biological data.

Results: In the present work we prove that the problem of scoring the

parsimony of a phylogenetic network is NP-hard and provide an

improved fixed parameter tractable algorithm for it. Further, we devise

efficient heuristics for parsimony-based reconstruction of phylogenetic

networks. We test our methods on both synthetic and biological data

(rbcL gene in bacteria) and obtain very promising results.

Contact: ssagi@math.berkeley.edu

1 INTRODUCTION

Phylogenetic networks are a special class of directed acyclic graphs

that models evolutionary histories when trees are inappropriate,

such as in the cases of horizontal gene transfer (HGT) and hybrid

speciation (Linder et al., 2004; Moret et al., 2004; Makarenkov

et al., 2006). Figure 1a shows a phylogenetic network on four

species with a single HGT event. In HGT, genetic material is

transferred from one lineage to another, as in Figure 1a. In an

evolutionary scenario involving horizontal transfer, certain sites

(specified by a specific substring within the DNA sequence of

the species into which the horizontally transferred DNA was

inserted) are inherited through horizontal transfer from another

species (as in Fig. 1c), while all others are inherited from the parent

(as in Fig. 1b). Thus, each site evolves down one of the trees induced

by (or contained in) the network. Similar scenarios arise in the cases

of other reticulate evolution events (such as hybrid speciation and

interspecific recombination). Hybrid speciation is a significant

evolutionary mechanism in plants, fish and other groups of species

(Linder and Rieseberg, 2004). HGT plays a major role in bacterial

genome diversification (Doolittle et al., 2003; Eisen, 2000) and

is a significant mechanism by which bacteria develop resistance

to antibiotics (Paulsen et al., 2003). To facilitate evolutionary

analysis of these groups of organisms, developing accurate criteria

for reconstructing phylogenetic networks and efficient algorithms

for inference based on these criteria are imperative. A large number

of publications have been introduced in recent years about various

aspects of phylogenetic networks; see (Linder et al., 2004;

Makarenkov et al., 2006) for detailed surveys.

Maximum parsimony (MP) is one of the most widely used criteria

for phylogenetic tree analysis. It is based on a minimum-evolution

principle, compares well with other accurate criteria and has a host

of efficient algorithms for solving problems based on it (Fitch, 1971;

Gusfield, 1991). In 1990, Hein observed that the criterion could be

extended to detect recombination (Hein, 1990, 1993). He observed

that each individual site in a set of sequences labeling a network

evolves down a tree contained in the network (e.g. the trees in

Fig. 1b and 1c are contained in the network shown in Fig. 1a).

Following this observation, Nakhleh et al. (2005) formulated the

parsimony criterion for inferring and evaluating phylogenetic net-

works. The HGT reconstruction problem seeks an optimal set of

edges whose addition to a given species tree results in an optimal

network that explains the given gene data. In the context of parsi-

mony, we refer to this problem as the fixed-tree MP phylogenetic

network problem, or FTMPPN. Solving this problem entails scoring

the parsimony of a phylogenetic network leaf-labeled by a set of

sequences; we refer to this problem as the parsimony score of

phylogenetic network problem or PSPN. Nakhleh et al. (2005)

used a straightforward algorithm (exponential in the number of

reticulation edges) for solving the PSPN problem and exhaustively

searched all trees for solving the FTMPPN problem. Further, they

left open the question of the computational complexity of these

problems.

In the present study, we prove that the PSPN problem is NP-hard.

However, on the positive side, we give an efficient algorithm for

the problem and bound its running time to prove that it is fixed

parameter tractable (Downey and Fellows, 1995). The algorithm has

very good performance in practice, as we show, and was integrated

as part of efficient heuristics for the FTMPPN problem. Further,

we devise new heuristics for the FTMPPN problem and show

through experiments on biological as well as synthetic data that
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the heuristics are efficient in practice, while maintaining a high

accuracy. The biological dataset we analyze includes the rbcL

gene in plastids, cyanobacteria and proteobacteria. A set of

HGTs was hypothesized for this dataset (Delwiche and Palmer,

1996).

A large body of work has been introduced in recent years to

address phylogenetic network reconstruction and evaluation. In

general, three categories of non-treelike models have been

addressed, all of which have been introduced under the umbrella

concept of phylogenetic networks. However, major differences

exist among the three categories. Splits networks are graphical

models that capture incompatibilities in the data due to various

factors, not necessarily HGT or hybrid speciation. Phylogenetic

networks are the extension of phylogenetic trees to enable the mod-

eling of reticulation events, such as HGT and hybrid speciation

[these are also called reticulate networks in (Huson and Bryant,

2006)]. The third category is that of recombination networks,

which are used to model the evolution of haplotypes and genes

at the population level. See Linder et al. (2004) and Makarenkov

et al. (2006) for detailed surveys of the various phylogenetic net-

work models and methodologies. Phylogenetic networks that we

address in this work belong to the second category.

2 PARSIMONY OF NETWORKS

2.1 Preliminaries and definitions

Let T ¼ (V, E) be a tree, where V and E are the tree nodes and tree

edges, respectively, and let L(T) denote its leaf set. Further, let X be

a set of taxa (species). Then, T is a phylogenetic tree over X if there

is a bijection between X and L(T). Henceforth, we will identify the

taxa set with the leaves they are mapped to, and let ½n� ¼ f1‚ . . . ‚ ng
denote the set of leaf-labels. A tree T is said to be rooted if the set of

edges E is directed and there is a single distinguished internal vertex

r with in-degree 0. We denote by Tv the subtree rooted at v induced

by the tree edges. A function l : ½n�!f0‚1‚ . . . ‚S � 1g is called a
state assignment function over the alphabet S for T. We say that

function l̂l : VðTÞ!f0‚1‚ . . . ‚ S � 1g is an extension of l on T
if it agrees with l on the leaves of T. In a similar way, we define a

function lk : ½n� 7! f0‚1‚ . . .‚ S�1gk
and an extension l̂lk :

VðTÞ 7! f0‚1‚ . . . ‚ S�1gk
. The latter function is called a labeling

of T. We write l̂l
kðvÞ ¼ s to denote that sequence s is the label of the

vertex v. Every position 1 � i � k denotes a site in the sequence.

Given a labeling l̂lk, let deðl̂l
kÞ denote the Hamming distance

between the two sequences labeling the two endpoints of the

edge e 2 EðTÞ.
A phylogenetic network N ¼ NðTÞ ¼ ðV 0

‚E
0 Þ over the taxa set X

is derived from T ¼ ðV‚EÞ by adding a set H of edges to T, where
each edge h 2 H is added as follows: (1) split an edge e 2 E by

adding new node, ve; (2) split an edge e
0 2 E by adding new node, ve0

and (3) finally, add a directed reticulation edge from ve to ve0 .

Phylogenetic networks must satisfy additional temporal constraints

(Moret et al., 2004). Finally, we denote by T(N) the set of all trees
contained inside network N. Each such tree is obtained by the

following two steps: (1) for each node of in-degree 2, remove

one of the incoming edges, and then (2) for every node x of in-

degree and out-degree 1, whose parent is u and child is v, remove

node x and its two adjacent edges, and add a new edge from u to v.
Figure 1 shows a network and the two trees it contains. For a

network N and a node v 2 VðNÞ, Nv denotes the graph induced

by the nodes reachable from v.

2.2 Parsimony of phylogenetic networks

We begin by reviewing the parsimony criterion for phylogenetic

trees. Given a phylogenetic tree with a labeling (sequences) of its

leaves, the idea is to add labels to its internal nodes such that the sum

of Hamming distances along all the edges of the tree is minimized.

More formally,

PROBLEM 1. Parsimony Score of Phylogenetic Trees (PSPT)
Input: A 3-tuple ðS‚T‚lkÞ, where T is a phylogenetic tree and lk

is the labeling of L(T) by the sequences in S.
Output: The extension l̂lk that minimizes

P
e2EðTÞ deðl̂lkÞ.

We define the parsimony score for ðS‚T‚lkÞ, parsðS‚T‚lkÞ, as the
value of the sum of Hamming distances along the tree’s edges and

parsðS‚T‚lk‚ iÞ as this sum of Hamming distances for site i only. In
other words, parsðS‚T‚ lkÞ ¼

P
1�i�k parsðS‚T‚lk‚ iÞ. Problem 1

has a polynomial time dynamic programming type algorithm origi-

nally devised for binary characters and binary trees by Fitch (1971)

and later extended to arbitrary degree trees and multi-state charac-

ters by Sankoff (1975). The algorithm finds an optimal assignment

(i.e. l̂lk) for each site separately.

Since Fitch’s algorithm is a basic building block in this paper, we

hereby describe it. As mentioned above, the input to the problem

is a tree T and a single character C ¼ l1. The algorithm finds

parsðf1‚0g‚T‚CÞ, the optimal assignment to internal nodes of T,
in two phases: (1) assigning values to internal nodes in a bottom-up

fashion and (2) eliminating the values determined in the previous

phase in a top-down fashion. Specifically, phase (1) proceeds as

follows: for a node v with children v1 and v2 whose values A(v1)
A(v2) have been determined1,

AðvÞ ¼ Aðv1Þ \ Aðv2Þ if Aðv1Þ \ Aðv2Þ 6¼ [

Aðv1Þ [ Aðv2Þ otherwise:

�

Phase (2) proceeds as follows: for a node v whose parent f(v) has
already been processed:

BðvÞ ¼ s 2 AðvÞ \ Aðf ðvÞÞ if AðvÞ \ Aðf ðvÞÞ 6¼ f

s 2 AðvÞ otherwise :

�

The algorithm applies to binary trees and extends in a straight-

forward manner to arbitrary k-degree trees by a slight modification

to phase (2): at each node v, B(v) is a state that is a member of a

majority of all AðviÞ for all children i and the ancestor of v. The
following lemma will be used later.

A B C D

X Y

A B C D A B C D

(a) (b) (c)

Fig. 1. (a) A phylogenetic network with a single HGT even from X to Y.
(b) The underlying organismal (species) tree. (c) The tree of a horizontally

transferred gene.

1A(v) is the set of all labels whose assignment to node v yield the minimum

parsimony score of subtree Tv. For leaf node v whose label is x, we have

A(v) ¼ {x}.
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LEMMA 1. Let T be a tree and C a single character over the
alphabet S. Let x be the number of internal nodes v s.t.
jAðvÞ j > 1 by applying Fitch’s algorithm on (T,C). Then
x < 2 · S*, where S� is the parsimony score of T over C.

As explained in Section 1 and illustrated in Figure 1, when

an HGT event occurs, the evolutionary history of the complete

genomes of the organisms is modeled by a phylogenetic

network. Nevertheless, the evolutionary history of every site

in these genomes is modeled by one of the phylogenetic trees

inside the network. This gives rise to the following definition

of the parsimony score of phylogenetic networks [as was

introduced by Hein (1990, 1993) and formalized by Nakhleh

et al. (2005)].

DEFINITION 1. Parsimony Score of Phylogenetic Networks
(PSPN)

Input: A 3-tuple ðS‚N‚lkÞ, where N is a phylogenetic network and
lk is the labeling of L(N) by the sequences in S.

Output: The extension l̂lk that minimizes the expressionP
1�i�k ½minT2TðNÞparsðS‚T‚lk‚ iÞ�.

The parsimony score of a network is the value of the sum above.

In the next section, we prove that the PSPN problem is NP-hard.

Notice that based on Definition 1 the parsimony of each site is

computed independently of the other sites, and hence we focus

on the case of a single site.

3 THE PSPN PROBLEM

3.1 Hardness of the problem

In the same spirit of MP heuristics for phylogenetic trees, a

crucial part of heuristics for solving the MP problem on phyloge-

netic networks involves solving the PSPN problem. The decision

version of the problem for the case of a single binary site is defined

as follows.

PROBLEM 2. (PSPN1)
Input: A phylogenetic network N ¼ NðTÞ ¼ ðV 0

‚E
0 Þ with binary

labeling of length 1, and an integer k.
Question: Is the MP score of the network � k?

We prove the hardness of the PSPN1 problem by a reduction from

the Maximum 2-Satisfiability (max–2–sat) problem (Garey and

Johnson, 1979). In max–2–sat the input is a set of clauses, each

with two literals. The goal is to find an assignment that satisfies a

maximum number of these clauses.

Due to space limitations, we only give a very general outline of

our proof. Let ‘True-True’ denote a clause that has no negated

literals, ‘True-False’ denote a clause that has exactly one negated

literal and ‘False-False’ denote a clause in which both literals are

negated. For each of these three types of clauses, we generate

subnetworks whose optimal parsimony score is 3, and such that

this score is determined by the labeling of two nodes (roots) in

each such subnetwork. These nodes correspond to the literals in

the max–2–sat problem. Each such node (literal) should be con-

nected to all the subnetworks (clauses) in which it appears in the

max–2–sat problem. Using this reduction we prove the following

theorem:

THEOREM 1. The PSPN1 problem is NP-hard.

Since Max–2–sat is hard even for inputs where each variable is

restricted to appear at most 12 times, the PSPN1 problem is NP-hard

even for networks of bounded degrees (where each node has at most

12 children).

3.2 An improved FPT algorithm

DEFINITION 2. A reticulation edge ðu!vÞ is called a lowest reticu-
lation edge (or just a lowest edge) if there is no reticulation edge
incident with any node in either Tu or Tv.

LEMMA 2. For every phylogenetic network, there exists a
lowest edge.
This lemma follows from the fact that phylogenetic networks are

acyclic and satisfy additional temporal constraints (Moret et al.,
2004).

COROLLARY 1. Let ðu!vÞ be a lowest edge. Then both Nu and Nv

are trees.
The algorithm Net2Trees of Nakhleh et al. (2005) enumerates all

the 2B possible trees contained inside a given network with B reticu-

lation edges and calculates the parsimony score of each tree by

running Fitch’s algorithm (Fitch, 1971) in Oðn jS j Þ time. The opti-

mal score among all trees contained inside the network is then

returned. The total running time is 2B ·Oðn jS j Þ, which, for a

fixed B is polynomial. However, a very simple example demon-

strates that this running time can be unnecessarily extremely high.

Consider a site with a single observed state. Obviously, the under-

lying tree yields the optimal assignment with score 0. In contrast the

naı̈ve algorithm of Nakhleh et al. (2005) will run in time exponential

in B (and in n in a worst-case scenario).

We now present our improvement to the algorithm from Nakhleh

et al. (2005) for computing the optimal score of a network N. By
Lemma 2, there exists a lowest edge e ¼ ðu! vÞ in N and by

Corollary 1 the subnetworks reachable from both endpoints u
and v are trees. Therefore we can compute A(u) and A(v) by Fitch’s

algorithm. The following lemma is fundamental for the algorithm

correctness.

LEMMA 3. Let e ¼ ðu!vÞ be a lowest edge in a network N for
which A(u) and A(v) have already been computed. Also assume the
resulting tree contains e. Then,
(1) If AðuÞjAðvÞ, there will be no mutation on e.
(2) If AðuÞ \ AðvÞ ¼ f, there will be a mutation on e.

In the cases that are not covered by Lemma 3, we say that v
is uncertain. Lemma 3 gives rise to the recursive algorithm,

PSPN(N), for computing the optimal score of N, as outlined in

Figure 2.

The correctness of the algorithm is implied by the construction

and Lemma 3. A reticulation edge ðu! vÞ is automatically taken

into the tree only if it yields no mutation and is automatically

rejected from the tree if it necessarily leads to a mutation. In all

other cases v is uncertain, and both cases are considered.

The algorithm recurs only on reticulation edges ðu! vÞ where v
is uncertain. Given that jAðvÞ j > 1, and by Lemma 1, it follows that

the number of such nodes is at most twice the optimal score of N.
THEOREM 2. The running time of the improved FPT algorithm is

O(n · 2OPT(N)), where n is the number of nodes in the network and
opt(N) is the optimal parsimony score of the site (under considera-
tion) on the network.

Maximum parsimony of phylogenetic networks

e125



4 THE FTMPPN PROBLEM

Finally, we consider the fixed-tree MP on phylogenetic networks

(FTMPPN) problem (Nakhleh et al., 2005). In this problem,

given an organismal (species) tree, the objective is to compute

an additional set of edges whose addition to the tree yields a

phylogenetic network that explains the horizontal gene transfer

events which occurred during the evolutionary history of the

sequences. This problem arises in situations when the underlying

organismal tree is known. For example, Lerat et al. (2003) reported
a well-supported organismal phylogeny reconstructed from

about 100 ‘core’ genes in g-Proteobacteria. Completing this

phylogenetic tree into a network based on the whole genomes of

these organisms amounts to detecting HGT events that occurred in

the g-Proteobacteria group.

Since the actual number of the HGT events as well as their

locations are not known, parsimony is used as the optimality cri-

terion for the search. Nakhleh et al. (2005) showed that solving this
problem accurately detects the HGT events in a sequence dataset.

However, since their goal was to study the quality of the approach

rather than the efficiency of computing it, they had a brute-force

implementation that took almost 10 h on datasets with only two

HGT events. Since this is infeasible in practice, we devise simple,

yet efficient and accurate, heuristics for solving the FTMPPN prob-

lem and demonstrate, through simulations, its excellent accuracy.

The preliminary results in Nakhleh et al. (2005) showed that the

optimal phylogenetic networks with k reticulation edges could

always be obtained from the optimal phylogenetic networks with

k – 1 reticulation edges. Based on this observation, we implemented

a branch and bound heuristic (B&B) in which at each step of the

search only ‘best’ networks are retained. Further, to find the optimal

phylogenetic networks with k reticulation edges, we conducted

search based only on the optimal ones with k – reticulation edges.

This cuts the time significantly, while maintaining excellent

accuracy (in terms of the optimality of the score computed by

the heuristic compared with that of the model network), as we

will show.

To gain further improvements in time, we extended the B&B

heuristic by inspecting Hamming distances on the tree edges; we

call this heuristic B&B (Hamming). This heuristic divides the

sequences (that label the nodes of the species tree) into blocks.

Then, the heuristic applies Fitch’s algorithm and labels the internal

nodes of the tree. Next, for each edge, it computes the Hamming

distance for each of the blocks and normalizes it by the average

Hamming distance over all blocks along the same edge. Finally, for

each edge we compute the difference between the maximum and

minimum values of normalized Hamming distances over all blocks

and use this value as a criterion for finding candidate edges. Finally,

the search for tree edges among which to add HGT events is done in

the (reduced) space of candidate edges. The rationale behind this

approach is that for DNA segments that were horizontally trans-

ferred (rather than inherited down the species tree) the parsimony

score on the species tree should be higher than that of segments that

evolved down the species tree. The reason for this is that the species

tree does not model the evolution of horizontally transferred DNA

segments, and hence that tree should not be a ‘good’ model for these

segments (which translates into high parsimony scores).

5 EMPIRICAL PERFORMANCE

5.1 Data and methods

For the biological data, we considered a 15-taxon dataset of plastids,

cyanobacteria and proteobacteria, which is a subset of the dataset

considered by Delwiche and Palmer (1996) and for which multiple

HGT events were conjectured by the authors. The 15-taxon rbcL

dataset consists of two sequences from the proteobacteria group,

two from cyanobacteria, one from green plastids, one from red

plastids, one cyanophora and four Form II rubisco sequences.

For this dataset, we obtained the species tree that was reported

in Delwiche and Palmer (1996) and analyzed the rubisco gene

rbcL of these 15 organisms. The gene dataset consists of 15 aligned

amino acid sequences, each of length 532 (the alignment is available

at http://www.life.umd.edu/labs/delwiche/alignments/rbcLgb7-95.

distrib.txt). We note that our method finds both the HGT edges

and the positions that are involved in each HGT.

For the synthetic data, we used the following protocol to generate

them. We used the r8s tool Sanderson (r8s) to generate a random

birth-death phylogenetic tree on 20 taxa. The r8s tool generates

molecular clock trees; we deviated the tree from this hypothesis

by multiplying each edge in the tree by a number randomly

drawn from an exponential distribution. The expected evolutionary

diameter (longest path between any two leaves in the tree) is

0.2. Such diameter can simulate the evolution of a set of plants

[see Bergthorsson (2004) for example of horizontal transfers in

plants].

We then generated five model phylogenetic networks by adding

1, 2, 3, 4 and 5 reticulation edges (simulating HGT events) to the

model tree. For each of the five phylogenetic networks, we used the

Seq-gen tool Rambaut and Grassly (1997) to evolve 26 datasets of

DNA sequences of length 1500 down the organismal tree and DNA

sequences of length 500 down the other tree contained inside the

network (the one that exhibits all HGT events). Both sequence

datasets were evolved under the K2P+g model of evolution, with

shape parameter 1 Kimura (1980). Finally, we concatenated the

two datasets.

To analyze the data, we have implemented the B&B as well as the

B&B (Hamming) heuristics for solving the FTMPPN problem. As

Fig. 2. The improved FPT algorithm for the PSPN problem.
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these two heuristics entail scoring the parsimony of a phylogenetic

network, we have implemented the naive algorithm, introduced in

Nakhleh et al. (2005) and referred to as ‘FPT’ in the results section,
as well as the new improved one, described in Section 3.2 and

referred to as ‘Improved FPT’ in the Results section, and compared

their performance in terms of time. In our analysis, we aimed to

investigate two main questions: (1) How do the new heuristics for

solving the FTMPPN problem perform with respect to identifying

the correct number of HGT events as well as their actual locations

on the organismal trees? (2) How does the Improved FPT algorithm

perform, in terms of actual running time, compare with the FPT

algorithm? In both the biological as well as synthetic data, the

organismal trees were known. For the biological data, we compared

our results against the HGT events conjectured by the authors, and

for the simulated data, we compared our results against the (known)

correct solutions.

5.2 Results and analysis

5.2.1 Biological data Figure 3a shows the parsimony scores of

the most parsimonious networks with different number of horizontal

gene transfer edges. We computed the weighted parsimony scores,

using five different amino acid substitution matrices: PAM120,

PAM250, BLOSUM45, BLOSUM62 and IDENTITY. The results

based on these five matrices were almost identical, and due to space

constraints we show only the results obtained using the IDENTITY

matrix. Figure 3a shows clearly that parsimony scores drop

dramatically when the first 5 or 6 potential HGT edges are

added to the species tree. The decrease then becomes insignificant,

and no decrease at all is achieved after adding the eighth edge. The

edges that resulted in the optimal decrease are shown by directed

edges posited on the species tree in Figure 3b, with each of the edges

representing a potential transfer of the rbcL gene (the numbers

associated with the directed edges represent the order in which

they were added). Figure 3b also listed the parsimony score of

the most parsimonious network after adding each of the HGT

edges. Row ‘þ Hi’ corresponds to the network after adding

ith HGT edge into the existing network, while ‘H0’ represents

the original species tree. The score changes from the previous net-

works are given inside the parentheses. It is clear that among the

15 taxa, the first five HGT edges are significant, while the others do

not result in a significant improvement in the parsimony score, if

any at all. The first three HGT edges group the Form II Rubisco

together and separates them from the rest (Form I Rubisco). The

other two HGT edges are placed between Cyanidium, a Red Plastid,

and one of the proteobacteria, and between Alcaligene H16 plasmid
and Rhodobacter sphaeroides I. These two HGT edges place the

two proteobacteria close to the red plastid. These five edges were

conjectured in (Delwiche and Palmer, 1996).

5.2.2 Synthetic data In the first set of experiments, we compared

the performances (in terms of actual computational time) of the

naive FPT algorithm (Nakhleh et al., 2005) and our new improved

FPT algorithm. The results are summarized in Figure 3c. The results

Fig. 3. (a) and (b) show results on the biological dataset, whereas (c)–(f) show results on the synthetic datasets. (a) The improvement in the parsimony score as

more HGT edges are added to the 15-taxon organismal tree. (b) The phylogenetic network obtained by adding the HGT edges that led to the best improvement in

the parsimony score. (c) The actual computational time (averaged over all 26 runs) of the naı̈ve FPT algorithm of (Nakhleh et al., 2005) and our improved FPT

algorithm for solving the PSPN problem, as a function of the number of HGT edges in the network. (d) actual computational time (averaged over all 26 runs)

taken by the heuristics and the exhaustive search method (on a log scale); these times were taken to solve the FTMPPN problem using the three methods. (e)

and (f): percent difference in parsimony scores (for all runs) between optimal networks computed by the heuristics and themodel networks, shownwith whisker-

and-box plots.
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show that except for the case of a single HGT event, the improved

FPT algorithm becomes much faster than the naive one as the

number of HGT edges increases. In particular, for the case of

5 HGT events, the improvement is larger than a factor of 2.

More importantly, as the number of HGT events increases, the

improvement becomes much more significant (indicated by the

widening gap between the two curves in Figure 3c). In the second

set of experiments, we studied the performance of the two heuristics

B&B and B&B (Hamming) for solving the FTMPPN problem. We

compared the time taken by these heuristics with the time the

exhaustive search of Nakhleh et al. (2005) would take; we had

to estimate this latter time, since it would take probably years to

perform an exhaustive search on all networks with more than two

HGT events. Further, we compared the parsimony scores of the

optimal networks computed by these heuristics, PSI, with the

parsimony score of the model network, PSM, by the formula

(PSM � PSI)/PSM %. This is the value referred to as parsimony

score difference(%) in Figure 3e and f. Figure 3d shows drastic

improvements in the time achieved by the two heuristics. The

exact times in minutes using the B&B heuristic for the networks

with 1, 2, 3, 4 and 5 HGT events are 3.5, 11, 25, 103 and 206,

respectively. The exact times in minutes using the B&B

ðHamming) heuristic for the networks with 1, 2, 3, 4 and

5 HGT events are 0.1, 8, 22, 100 and 192, respectively. On

the other hand, the estimated time in minutes using an exhaustive

search in the network space are 6.5, 7.3 · 103, 8.0 · 106, 9.5 ·
109, and 12.0 · 1012, respectively. Equally important, the

improvement was achieved while maintaining high accuracy in

the parsimony scores computed, which is reflected in the negli-

gible score differences plotted in Figures 3e and f. The Figures

show that the parsimony scores of the networks inferred by the

heuristics fall within 0.7% of the parsimony scores of the model

networks. This is a very high accuracy.

6 CONCLUSIONS AND FUTURE WORK

We addressed the parsimony criterion for phylogenetic networks.

We proved that PSPN is NP-hard and devised an efficient algorithm

for solving it. We also designed efficient heuristics for the FTMPPN

problem and tested our methods on biological as well as synthetic

data. Our results are very promising and provide a significant

contribution toward putting the methodologies for reconstructing

and evaluating phylogenetic networks on a par with those for

phylogenetic trees.

Though we have assumed site independence, a more realistic

model incorporates correlation among neighboring sites. For future

work, we will investigate the MP criterion under such models. Since

phylogenetic trees are a special case of phylogenetic networks, we

expect parsimony’s shortcomings on trees (such as the long branch

attraction problem) to extend to phylogenetic networks. We will

investigate these cases and work on establishing relationships

between the MP criterion on the one hand and other network

reconstruction criteria on the other. We also intend to analyze others

groups of prokaryotic organisms, establish the complexity of the

FTMPPN problem and design efficient solutions for it.
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