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ABSTRACT

Motivation: A metabolic graph represents the connectivity patterns
of a metabolic system, and provides a powerful framework within
which the organization of metabolic reactions can be analyzed and
elucidated. A common practice is to prune (i.e. remove nodes and
edges) the metabolic graph prior to any analysis in order to eliminate
confounding signals from the representation. Currently, this pruning
process is carried out in an ad hoc fashion, resulting in discrepancies
and ambiguities across studies.
Results: We propose a biochemically informative criterion, the
strength of chemical linkage (SCL), for a systematic pruning of
metabolic graphs. By analyzing the metabolic graph of Escherichia
coli, we show that thresholding SCL is powerful in selecting
the conventional pathways’ connectivity out of the raw network
connectivity when the network is restricted to the reactions collected
from these pathways. Further, we argue that the root of ambiguity
in pruning metabolic graphs is in the continuity of the amount of
chemical content that can be conserved in reaction transformation
patterns. Finally, we demonstrate how biochemical pathways can be
inferred efficiently if the search procedure is guided by SCL.
Contact: wz4@rice.edu; nakhleh@rice.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Graph representation of a metabolic network connectivity map
provides a simple representation of certain relationships among the
network’s entities. Analyses of such graphs have provided various
insights into the properties of metabolic networks, yet not without
controversy. For example, the finding of a short average path length
in metabolic networks [e.g. Jeong et al. (2000); Wagner and Fell
(2001)] has been challenged in that it was based on the ‘raw’
metabolic graphs, without first pruning them (Arita, 2005). To
illustrate the concept of ‘pruning’, consider the following reaction
analyzed in Ma and Zeng (2003):

N-acetylornithine+L-glutamate ⇔
L-ornithine+N-acetyl-L-glutamate

(1)

In their network assembly, the authors only linked N-acetylornithine
to L-ornithine and L-glutamate to N-acetyl-L-glutamate and omitted

∗To whom correspondence should be addressed.

the link between L-glutamate and L-ornithine and the link between
N-acetylornithine and N-acetyl-L-glutamate. Depending on the edge
semantics of the network and the subsequent analyses, this pruning
step may or may not make a difference. From the perspective
of causality of biochemical transformation and pathway inference
(Ma and Zeng, 2003), this pruning makes sense: no chemical
content is conserved between L-ornithine and L-glutamate, and
the acetyl group that is conserved between N-acetylornithine and
N-acetyl-L-glutamate is not sufficiently representative for linking
the two chemical compounds. However, if one is modeling the
propagation of perturbation in the concentration of metabolites
[e.g. Wagner and Fell (2001)], then not removing these last two
edges makes sense, since they do capture how a perturbation to
certain metabolites may spread throughout the metabolic system.
Under this semantics, metabolic graphs are built by connecting
all the metabolites that participate in a reaction (Holme, 2009),
and subsequently analyzed, without post-processing the connectivity
(Ravasz et al., 2002), to elucidate properties on information transfer,
network robustness and resilience, etc. In this article, we focus on
the first of the edge semantics, namely causality of biochemical
transformation.

To build metabolic graphs for pathway inference, all metabolites
participating in a reaction are connected to form the raw graph,
and then, via connectivity pruning, edges that may result in the
inference of biochemically implausible pathways [Ma and Zeng
(2003); van Helden et al. (2002)] are pruned [hypergraph-based
pathway inference techniques, such as the network expansion
(Ebenhh et al., 2004), require different treatment and are beyond the
scope of this article]. Several methods exist for pruning metabolic
graphs including hub deletion (Diaz-Mejia et al., 2007), removal
of currency metabolites (Herrgard et al., 2008; Zhao et al., 2007),
manual curation (Zhao et al., 2006) and RPair typing (Faust et al.,
2009). However, the ambiguity inherent in these ad hoc methods,
and the lack of a systematic one, may confound analyses of
metabolic graphs (Tanaka, 2005; Zhao et al., 2006; Zhu and Qin,
2005). Here, we propose a simple criterion, the strength of chemical
linkage (SCL), for systematic pruning of metabolic graphs. By
analyzing the metabolic graph of Escherichia coli, we demonstrate
the power of this criterion in yielding biochemically meaningful
pathways. Further, we characterize the commonly used pruning
heuristics in terms of the strength of chemical linkage, and discuss
the ambiguity in these methods and the superiority of using the
SCL criterion. Finally, we demonstrate the utility of the criterion in
pruning the search tree used in pathway inference methods to gain
in accuracy and efficiency compared with other graph-based search
heuristics [e.g. Croes et al. (2006)].
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Table 1. Inference of aMAZE pathways (Lemer et al., 2004)

Pathway name Length Rank

Arginine Catabolism 3 1
Arginine Utilization 4 1
Chorismate Biosynthesis 4 1
Glucuronate Catabolism 3 1
Lysine Biosynthesis 7 1
Threonine Biosynthesis 3 1
Oxidative Pentose Phosphate Pathway 4 1

Glycolysis 6 2
Methionine Biosynthesis 5 95

‘Length’ is the number of reactions from the source to the target compound in the
reference pathway. ‘Rank’ is the place of the reference pathway as identified by
Algorithm InferPathway.

2 METHODS

2.1 Reaction data and reference pathways
The 1383 reaction equations were obtained from KEGG Ligand database
(Kanehisa and Goto, 2000). For each reaction with any gene in E.coli
annotated to produce an enzyme that catalyzes the reaction, we assembled
a graph connecting every pair of metabolites that sit on opposite sides of
the reaction (the raw graph). Both reaction-enzyme mapping information
and enzyme-gene mapping information were downloaded from KEGG.
Following common practice (Lee et al., 2006), we removed any reaction
that appeared in the reference pathway and yet did not have a definite gene
annotation; e.g. reaction R07765 has only the generic EC number 1.3.1.- even
though there are genes in E.coli that are annotated for that EC number. For
reactant pairs that exist in the KEGG RPair database, we used information
on the molecule alignment. ‘Markush structures’ and groups with label ‘R’
were taken as one atom. For reactant pairs that do not exist in the database,
we manually set the alignment number to 0. This treatment is dependent
on the coverage of RPair database to all possible reactant pairs with non-
zero alignments. We manually verified that the coverage is satisfactory. Out
of 1383 reactions that exist in the E.coli network, 1104 reactions needed
to be treated with additional specification to connections with alignment
number 0. Out of 2642 connections with alignment number 0 added in
these reactions, 98 connections have actual non-zero chemical linkage.
The percentage of unsatisfactory connections was less than 4%. Moreover,
from a closer inspection, many of these linkages are hard to process because
of the use of generic compounds and unbalanced reactions in the KEGG
Ligand database (Blum and Kohlbacher, 2008; Poolman et al., 2006).

Reference pathways were obtained from the KEGG KGML pathway files.
Reactions that exist in the reference pathways but are not validated by the
presence of clearly defined enzymatic information, and thus do not appear in
the total set of reactions from which the raw metabolic graph is assembled,
were removed. Annotated pathways for the pathway inference validation
were obtained from the aMAZE database (Lemer et al., 2004). We excluded
those pathways that are duplicates in terms of using the same sequence of
compounds and those that have fewer than two steps. Two other manually
curated reference pathways were also included. The name of the pathways
are listed in Table 1. The main metabolites and reactions of these pathways
are listed in the Supplementary Material.

2.2 The SCL criterion
We define the strength of chemical linkage, or SCL, for two reactants as
the proportion of chemical content conserved between them in a reaction,
normalized by the maximum chemical content of either of the two reactants.
If there is more than one mechanism that involve the same two reactants, SCL
takes the maximum result computed over all such mechanisms. For example,

in some rare cases, two reactants can be converted to one another via more
than one mechanism even in one reaction; e.g. C00022-C00900 in R00006
[the C and R labels are standard indices used in KEGG (Kanehisa and Goto,
2000)]. Chemical content can be quantified in many ways; in this article,
we use the absolute atom counting. Under this quantification, given the set
C(A) of non-hydrogen atoms in molecule A (due to the fact that hydrogen
is not generally considered the backbone of biochemical compounds), the
chemical content of the compound is simply |C(A)|. Atoms are mapped in
the reaction according to the true chemistry. While in this study we use the
KEGG RPair database for molecule alignments, SCL depends only on the
physics of the real chemical reaction and is independent of the data source.

Formally, for a compound pair (A,D) that sit on two sides of a reaction
(e.g. A+B⇔C+D), we define

SCLself(A|D) =|C(A)∩C(D)|/|C(A)|
SCL =|C(A)∩C(D)|/max(|C(A)|,|C(D)|)
=min(SCLself(A|D),SCLself(D|A)).

(2)

SCLself(A|D) measures the contribution of chemical content from D to A,
or equivalently, how much chemical content of A comes from D. A high
SCLself(A|D) value indicates a greater importance in chemical composition
of D when A is produced/consumed in the reaction. When compound D is
clear from the context (e.g. when there is only one reactant on the other
side), we write SCLself(A). Further, in this context, we use the definition
SCLother(A)=SCLself(D|A). High SCL is an indication of stronger chemical
causality in terms of chemical content between the two reactants in a specific
reaction.

2.3 A pathway inference method
In order to demonstrate the quality of SCL-based pruning, we introduce a
simple, SCL-based algorithm for identifying a set of pathways from a source
to a target metabolite in a given metabolic graph; see Algorithm 1. The
algorithm first identifies a set of candidate paths within a maximum length
in a breadth-first manner (Lines 5–10), extending paths (Lines 9–10) only
using edges with an SCL value higher than a certain threshold T (in our study,
we use t=0.4; see Section 3.1 for a discussion of this choice).After exploring
all the valid paths of a certain length, all paths are reordered according to
the minimum SCLself value of all steps along the path (Line 11). Only the
top (if there are more than) N=1000 paths are saved for further exploration
in the next round (Line 12). Finally, the paths are ranked by the minimum
SCLself value of any edge they contain, where paths with lower values are
ranked higher (Line 13).

Algorithm 1: InferPathway.
Input: Source metabolite: s; Target metabolite: t; Threshold of SCL: T ;

Maximum path length: L;
Output: A list of ranked pathways SResult .

1 SToExplore← a path that contains only t;
2 SResult←Ø;
3 while SToExplore �=Ø && path length <L do
4 STemp←Ø;
5 foreach path p in SToExplore do
6 foreach neighbor n of the last node l in p do
7 if n=s then
8 SResult←p extended by n;

9 else if n /∈p && SCLself(l|n)>T then
10 Extend p using n and add the new path into STemp;

11 Sort STemp by the minimum SCLself on each path;
12 SToExplore← top 1000 paths in STemp;

13 Sort SResult by the minimum SCLself on each path;
14 return SResult ;
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Fig. 1. The distribution of SCL values based on the 1124 edges in the raw
metabolic network of E.coli that are present in (top panel) and 1957 ones
that are absent from (bottom panel) the reference pathways.

3 RESULTS
To assess the quality of SCL, we conducted three tasks on E.coli’s
metabolic graph. First, we computed the distribution of SCL
values for edges in the raw graph, categorized based on the
presence/absence in the reference pathways to assess the power
of SCL in selecting connectivities. Second, we explored pathway
inference guided by SCL values to assess its power in finding
compound-to-compound linear/cyclic biochemical pathways. Third,
we studied existing metabolic graph pruning methods in the light of
the SCL criterion.

3.1 The distribution of SCL values
Figure 1 shows the distribution of SCL values of raw graph edges
present/absent in the reference pathways. Most of the edges present
in the reference pathways have high SCL values, whereas a great
majority of those missing from the reference pathways have SCL
values lower than 0.2. These results show that SCL is strongly
correlated with the absence/presence in reference pathways; stated
differently, SCL can be used as a selection criterion for deciding
which connections to include in a reference pathway.

Next, we studied whether pruning the raw graph based on
thresholding the SCL values (keeping only edges with SCL values
no less than a threshold T ) produces the conventional pathway
connectivities. Pathway maps are organized into five categories
according to the hierarchy provided by the KEGG pathway
database: carbohydrate metabolism, nucleotide metabolism, lipid
metabolism, amino acid metabolism and metabolism of cofactors
and vitamins. In addition, we considered two higher level pathway
unions provided by KEGG, namely eco01100 (Metabolic Pathways)
and eco01110 (biosynthesis of secondary metabolites). Receiver
operating characteristic (ROC) curves for some of the pathways in
the carbohydrate metabolism and the pathway unions are shown in
Figure 2.

For a specific pathway, we count the number of edges from the
raw metabolic network that are present in the reference pathway.
Positives (P) [Negatives (N)] are defined as the connections that
do (do not) exist in the reference pathway. For each value of the
threshold T , only edges with SCL values ≥T are kept, and the
rest are removed. The true positives (TP) are the positives that also
exist in the thresholded network. The false positives (FP) are the
positives that do not exist in the thresholded network. The true

Fig. 2. ROC curves based on thresholding the SCL values. Each curve is
based on the raw graph restricted to a particular pathway map and on 50
threshold values evenly distributed in the range [0,1]. Similar results have
been obtained on other pathway maps (see Supplementary Material). The
right panel is based on a combination of pathways where the ROC curve
of hub deletion and one based on random SCL assignment are also shown
with up and down triangles, respectively. The ROC curve on hub deletion is
obtained by tuning the degree threshold of the hub definition, thus changing
the presence/absence of the network connections.

positive rate (TPR) equals |TP|/|P| and the false positive rate
(FPR) equals |FP|/|N|. Notice that when T=0, TP=P and FP=N,
giving TPR=FPR=1. On the other hand, when T >1, TP=FP=∅,
giving TPR=FPR=0. In each panel, T increases in the direction
from the upper-right corner to the lower-left corner. The concave
shapes of the ROC curves indicate that thresholding SCL has strong
power of selection for connections that appear in pathways, as
opposed to those that are missing. This further validates our implicit
reasoning that conventional pathway connectivity is a reflection of
the chemical linkage strength.

While no SCL threshold seems to exist for perfect retrieval
of established biochemical pathways, our detailed study of
the Glycolysis/Gluconeogenesis pathway (with threshold T=0.4)
revealed two main reasons (beside the issue with KEGG’s RPair
database coverage) behind the false cases. The first reason is the
presence of reactant pairs with special roles. Not all the reactant
pairs actively participate in the mass circulation, but are required
for, e.g. energy dependencies. For example, ATP–ADP drives a
reaction toward a certain direction (Ma and Zeng, 2003). Many
such reactant pairs have strong chemical linkage with each other, yet
weak linkage with other reactants. They are commonly perceived as
carriers of small chemical moieties, such as proton (NAD, NADH),
phosphate (ATP, ADP; Protein–histidine, Protein N-phospho-L-
histidine) and acetyl group (CoA, Acetyl-CoA). These reactant
pairs with special roles usually cause false positives, i.e. reactant
pairs absent from the reference pathways but with a high chemical
linkage. Nonetheless, these false positives are completely tolerable
and, in our view, are even better to be preserved in the network.
For pathways where these reactant pairs are used for non-mass
circulation reasons (e.g. eco00010), they are usually disconnected
from the bulk network component due to a low SCL value with other
reactants (see Supplementary Material). Therefore, their presence
would not confuse the pathway inference by creating biochemically
unintuitive shortcuts. Moreover, it makes sense to preserve these
reactant pairs in the network and the reference pathways since they
represent the way how energy is consumed. For example, when
ADP is used to make ATP, such cycling would be unclear if the
consumption of ATP is missing from the network. More importantly,
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being a ‘carrier’ is in itself ambiguously defined, since all reactant
pairs ‘carry something’. In order to be a ‘carrier’, same reactant pair
should appear in multiple reactions to ‘load’ and ‘unload’ chemical
groups. We have observed that although there exist certain reactant
pairs that participate in a large number of reactions, there is in general
no clear-cut boundary for being a ‘carrier’ (see Supplementary
Material).

The second reason is the inappropriate quantification of
chemical content by absolute atom counting. For example, in the
following reaction [pyruvate + thiamin diphosphate ⇔ 2-(alpha-
hydroxyethyl)thiamine diphosphate + CO2], reactant pair (CO2,
pyruvate) is missing from the reference pathway and its presence
in the thresholded network can potentially give rise to shortcuts
between pyruvate and other irrelevant compounds via CO2. The
total number of non-hydrogen atoms of pyruvate is 6 and that of
CO2 is 3. Although they share three atoms in the reaction, two
of them are oxygen and only one is carbon, which is traditionally
considered to be the backbone of Pyruvate. Therefore, when all
the non-hydrogen atoms are included SCL=3/6=0.5. However,
the value becomes SCL=1/3∼0.3 when only carbon atoms are
considered, since Pyruvate has three carbons, CO2 has one, and
they share one carbon in the reaction. By counting only carbons, the
false positive connection can be avoided. This not only reflects the
fact that the atoms are treated as biochemically different, but also
suggests that alternatives to absolute atom counting (e.g. by counting
only carbons) might improve the performance of the criterion on
certain (but not all) reactions.

Further, a large collection of atoms may form some chemical
group that functions as a single unit. In the context of one particular
pathway, their detailed composition, creation and degradation is
not relevant. But, again, if we count only the number of non-
hydrogen atoms, the criterion might be biased. For example, in
reaction [ATP+ acetate + CoA⇔AMP+ Diphosphate +Acetyl-
CoA], the reactant pair (CoA, acetyl-CoA) is falsely present (false
positive) while the pathway reactant pair (acetate, acetyl-CoA) is
missing (false negative). The 48 non-hydrogen atoms are conserved
in the former reactant pair, while only 3 are conserved in the
latter. Under absolute atom counting, the former reactant pair is
stronger in chemical linkage while the latter is weaker. However,
biochemically, all 48 atoms in the former comes from CoA which
functions as a single unit in the context of glycolysis pathway, while
the three atoms conserved in the latter contribute to three out of
four non-hydrogen atoms in acetate. If we count all atoms in CoA
as 1, we obtain SCL=1/4=0.25 for the (Acetate, Acetyl-CoA) pair
and SCL=3/4=0.75 for the (CoA, acetyl-CoA) pair, which would
avoid both false cases. However, to do this throughout the metabolic
graph, finer delineation of functional groups for metabolites is
needed, which we target as future work.

By scanning the threshold from 0 to 1 with increment 0.01,
we find that the range of threshold value that minimizes the false
cases (both false positive and false negative) is from 0.38 to 0.39.
Nevertheless, as shown in Figure 2, when individual pathway is
concerned, there does not exist a threshold value of SCL that suits
all (see Supplementary Material). We found that the range of optimal
threshold in different pathways varies not only in magnitudes, but
also in lengths. Some pathways reach optimal pruning under a
wide range of threshold values. Besides, the optimal threshold of
some pathways can be explained by their biochemical function.
For example, pathways involved in fatty acid metabolism have a

lower threshold. This reflects the fact that links in these pathways are
responsible for the extension of a long fatty acid chain by one small
residue, which is weak in the sense of relative mass conservation.

3.2 Using SCL in pathway inference
In order to investigate the effectiveness of SCL in pathway inference,
we applied Algorithm InferPathway (see Section 2) to source/target
pairs of eight reference E.coli pathways obtained mostly from the
aMAZE database (Lemer et al., 2004). Results are shown in Table 1.
In Figure 3, we show two of the reference pathways which are
correctly returned by our method as the top result, namely, the
Lysine Biosynthesis and Oxidative Pentose Phosphate Pathway, as
well as the two pathways that differ from our top results namely, the
Glycolysis and Methionine Biosynthesis pathways.

For Glycolysis (iii of Fig. 3), the only difference between the
reference pathway and our top result (ranked second; see Table 1)
is the use of reaction R01827 instead of a combination of reactions
R04779 and R01070. The shortcut is a documented step in the KEGG
pathway map, but only in the Pentose Phosphate pathway map,
indicating that the exclusion of the single reaction step is of manual,
rather than biochemical, origins. For the Methionine biosynthesis
pathway (iv of Fig. 3), our method fails to return the annotated
pathway as the top result. The only step that is consistently missing
from our inference is the shortcut from O-succinyl-L-homoserine
to L-homocystein without passing through Cystathionine, as is the
case in the annotated pathway. Two clarifications are in order here.
First, the shortcut step is structurally valid but infeasible in terms of
free energy—information that is not incorporated into the reaction
equation. The reaction’s direction is to the left, as Hydrogen
sulfide takes the gas form under room temperature and leaves
the system quickly once formed: [O-succinyl-L-homoserine+
Hydrogen sulfide⇔L-Homocysteine+Succinate]. Second,
the missing step in the annotated path, composed of the
two reactions [O-succinyl-L-homoserine+L-cysteine⇔
Cystathionine+Succinate] and [Cystathionine+H2O⇔
L-Homocysteine+NH3+Pyruvate] has a low SCLself value
of 0.5. This is because to add just an SH (mercapto group),
a cysteine is recruited and pyruvate is released subsequently.
However, when computing SCLself of the link from O-succinyl-
L-homoserine to L-cystathionine, the entire cysteine contributes
to the number of non-conserved atoms, although only SH (1
non-hydrogen atom) is preserved after the subsequent step. The
major part of cysteine (6 non-hydrogen atoms) is released as
pyruvate. This issue can be solved by tracking the identity of each
atom and recording for each intermediate metabolite the set of its
atoms that are conserved all the way to the target.

We also studied the capability of the algorithm to find cyclic
pathways by applying it to contiguous metabolites on the TCA cycle
pathway (v in Fig. 3). The pathway connections corresponding to
the top nine results returned are shown. Indeed, all intermediate
metabolites, except for the Succinyl-CoA, in the TCA cycle are
recovered as well as all other connections that are documented in
the pathway maps of KEGG. The low SCL value (0.13) on one of
the two missing steps involving Succinyl-CoA is due to a reason
same as discussed above, namely that CoA contains many atoms
yet functions as one unit.

A satisfying consequence of this pruning strategy is its capability
of not only getting pathways but also rejecting cases where in
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Fig. 3. Pathways inferred by applying algorithm InferPathway onto the E.coli metabolic network. Nodes are labeled by the metabolite name used in KEGG.
Edges are labeled by the SCLself of the link, along with the reaction ID used in KEGG of one of the reactions that make available the transition shown
in parentheses. The solid connections correspond to the top 9 results returned from our method. (i) Lysine Biosynthesis. (ii) Pentose Phosphate Pathway.
(iii) Glycolysis. Dim solid connections are the annotated pathway and the second result returned by our method. The top result uses the shortcut that is shown
in dark color. (iv) Methionine Biosynthesis. Dark solid connections are the top result returned by our method. The annotated pathway differs from the first
result by the dashed connections. The second result differs from the first result by the dark solid connections. (v) TCA (tricarboxylic acid) cycle. The annotated
TCA cycle is shown in dim color (the dashed links are missing from the result).

between the given source and target there is no linear unbranched
pathway that is biochemically meaningful. If the synthesis of a
metabolite requires contributions from many different sources, this
advantage would be reflected in our method as a low minimum
SCLself of all paths returned. To further illustrate the efficiency
of pathway inference guided by SCLself , we compare the search
efficiency by only considering non-zero SCL (or equivalently, the
presence/absence of annotations for reactant pairs in the RPair
database), by pruning of extension using the SCLself , by the pruning
of exploration using minimum SCLself on the path and by a
combination of both pruning. We found first that no matter how
large the results, minimum SCLself always sorts out the reference
pathway to a high rank (2 in case of glycolysis) while sorting using
the path length does not (170 ties with the highest rank being 65).
With the same accuracy of the reference pathway, the result set
(Fig. 4) and total number of node visits (see Supplementary Material)
is greatly reduced when our pruning strategies are applied. Same
observations have been obtained from other pathways. These results
combined demonstrate the utility of SCL in not only sorting out the
best pathway from the result set but also being effective in pruning
the search tree of path finding.

3.3 Existing pruning methods in the light of SCL
Here, we compare existing pruning methods in terms of the SCL
criterion, and discuss the necessity and superiority of SCL.

3.3.1 Hub deletion (Diaz-Mejia et al., 2007) and currency
metabolites (Herrgard et al., 2008) Figure 5 shows that the average
SCL value of a graph increases as hubs (nodes of high degree) are

Fig. 4. Comparison of pruning strategies. The size of results computed
on Glycolysis pathway as the maximum path length increases. ◦: No SCL
pruning. Only presence and absence of RPair is used. �: Pruning of path
exploration using minimum SCL on the pathway (see Methods). ∇: Pruning
of path extension using SCLself. +: Combination of both path exploration
pruning and path extension pruning. In all cases, the reference pathway ranks
the second in the result set (see Table 1).

removed from the graph, which is in agreement with the rationale
behind hub deletion (Diaz-Mejia et al., 2007). Despite its similar
effectiveness in pruning the network connection (red curve in Fig. 2),
the degree of a metabolite depends only on the global layout of the
network which has little meaning in the local chemistry of each
reaction. Indeed, the lack of smoothness of the curves indicates a
poor correlation between the node degree and the SCL [similarly
shown by Faust et al. (2009)]. Hub deletion is known to suffer from
several issues (Arita, 2005; Zhao et al., 2006)), one of which is
the coarse grainedness in the sense that connections are pruned by
deleting metabolites as well as all their connections. Accordingly, we
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Fig. 5. Change in SCL values as more hubs are deleted by decreasing order of
their degrees. Solid line: presence in the pruned graph. Dashed line: absence
from the pruned graph. ×: upper quartile (75% in SCL). +: median (50% in
SCL). Y : lower quartile (25% in SCL).

have observed that not all the connections of these hub metabolites
are of low SCL values.

Along the same line, some metabolites, defined in an ad hoc
fashion, and referred to as pool metabolites (Deville et al., 2003) or
currency metabolites (Ma and Zeng, 2003), which largely coincide
with the hub metabolites (Croes et al., 2006) are often defined
for network pruning. A widely used example is ATP (Blum and
Kohlbacher, 2008; Zhao et al., 2006). Although ATP in many
cases serves as a carrier of phosphate groups and an energetic
driver of reactions, and it is also actively involved in the mass
circulation of nucleotide metabolism. The versatility of ATP can
be demonstrated by a signature based on SCLself and SCLother
(Fig. 6). The functionality of serving as a carrier of small chemical
moieties is reflected in the signature by two groups of dots, one
in the top-left corner and the other in the bottom-right corner.
The others correspond to other functions of ATP. Some of these
involve a high SCLother value—an indication of contribution to the
mass circulation. For the same reason, we see in Figure 5 that as
more and more hubs are deleted from the graph, more connections
of high SCL values are eliminated (the increase in the dashed
curves) as well. This suggests that a graph with high SCL values
is hard to obtain without losing important connectivity information
of the graph. From Figure 6, we also observe that some pool
metabolites serve multiple functions (as indicated by multiple dots
in the signature; e.g. ATP and pyruvate) while others are functionally
specific (as indicated by a single dot in the signature; e.g. NAD+
and H2O). Compounds that are usually released as part of other
bulk metabolites have dot(s) only in the bottom-left corner of their
signatures (e.g. H2O, CO2 and NH3).

3.3.2 Manual curation (Ma and Zeng, 2003; Zhao et al., 2006; Zhu
and Qin, 2005) In addition to being labor intensive and error prone,
we show that pruning by manual curation may also be ambiguous.
Consider reaction (1) above. The reactant pair N-acetylornithine
and N-acetyl-L-glutamate is missing because the acetyl group is not
sufficient to represent the link between the two compounds. Now,
consider reaction

Acetyl-CoA+formate⇔CoA+pyruvate (3)

In this case, acetyl-CoA loses the acetyl group to formate to form
pyruvate. The question is: should we eliminate the connection
between acetyl-CoA and pyruvate? In this case, the acetyl group
is important, as 2/3 of the carbon backbone of pyruvate comes from
it. Hence, this connection should be kept in the network. Although

Fig. 6. The SCL signature for six metabolites: H2O, ATP, NAD+, Pyruvate,
Acetyl-CoA, and CO2. The darker the dot for a metabolite C, the
more reactions exist in E.coli’s metabolic network with connections of
(SCLother(C); SCLself(C)) combination.

reactions (1) and (3) show exactly the same mass transformation
pattern [(Acetyl-Group I, Group II)] on one side of the reaction and
(Group I, Acetyl-Group II) on the other side), we make different
decisions on whether to prune away the connection between acetyl-
Group I and acetyl-Group II. In fact, the intrinsic nature of chemical
transformations implies that the amount of chemical moieties that are
conserved in any reactant pairs is arbitrary (Fig. 1). A combination
of the SCL pruning criterion with the objective quantification of
chemical content can help ameliorate this problem.

3.3.3 RPair types (Faust et al., 2009) Pruning methods also
include filtering specific class(es) of reactant pairs inside a reaction
(Faust et al., 2009). The KEGG RPair database provides such
classification by assigning reactant pairs to five different categories:
‘main’, ‘cofac’, ‘trans’, ‘ligase’ and ‘leave” (Kotera et al., 2004).
The categorization is reaction dependent: one reactant pair may be
of different types in different reactions. The typing is based on the
classification of the enzymes (e.g. oxidoreductase, transferase, etc.)
that catalyze the reaction and the role of the reactant pair in the
reaction. However, the five types are manually curated, thus resulting
in the same problems as discussed above.

In Figure 7, we plotted the distribution of SCL values of reactant
pairs in the five categories. Reactant pairs of ‘main’ and ‘cofac’
tend to have higher SCL values, while reactant pairs of ‘leave’
and ‘trans’ tend to have lower SCL values. Pathway connections
are composed of reactant pairs belonging to different categories,
although the dominant categories are ‘main’ and ‘trans’ (Fig. 7).
This is in agreement with the previous practice of using only these
two types for metabolic network assembly (Faust et al., 2009).
Reactant pairs of type ‘ligase’ have a symmetric distribution, since
this type consists of reactions where a large piece of chemical
compound is decomposed into two components giving rise to two
reactant pairs complementary in SCL values. For example, reaction
[ATP + Deamino-NAD++ NH3⇔ AMP + Diphosphate + NAD+]
gives rise to both ATP-AMP (high SCL) and ATP-Diphosphate (low
SCL) as reactant pairs of type ‘ligase’.
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Fig. 7. Distribution of SCL values of the five RPair types. The pie chart
shows the distribution of RPair types in the connections that are annotated in
KEGG reference pathway. Colors in the pie chart correspond to the colors in
the histograms. The histograms shows for a given RPair type its distribution
of SCL values based on all connections that are annotated with RPairs in the
metabolic network of E.coli.

4 DISCUSSION
In this article, we introduced the strength of chemical linkage,
or SCL, as a criterion for pruning metabolic graphs. The use of
the conserved chemical content according to the actual reaction
mechanism in this work is in contrast to the previous approach
where only structural similarity between the two reactants is
considered (Rahman et al., 2005). Although we also use the RPair
database, unlike (Faust et al., 2009), whose pruning depends on the
presence/absence of RPairs or the certain classes of reactant pairs
annotated from KEGG based on the type of enzyme that catalyze
the reaction (Kotera et al., 2004), we used only the information for
molecule alignments. Such information can also be obtained from
other sources, such as Crabtree et al. (2010).

We showed that the SCL criterion is biochemically intuitive and
has power of selection for the conventional pathway connectivity
when thresholded. False positive and false negative cases are caused
mainly by improper quantification of chemical content as well as
flaws in the data. The utility of using SCL on pruning the searching
tree in pathway inference was evaluated. Biochemically meaningful
pathways can be found by implementing a simple search program
using the SCL criterion. Further, we compared several commonly
used connectivity pruning heuristics and ad hoc methods, such as
hub deletion and manual curation. We found that SCL values reflect
the rationale behind these heuristics, yet the SCL is more objective,
systematic and robust to annotation error. Many ambiguities of
these heuristics are rooted in lacking an objective criterion and
quantification of chemical content.

Note that although, we focus here only on graphs whose nodes are
compounds, SCL can also be adapted in the assembly of networks
whose nodes are reactions or reaction-derived entities such as
enzyme class or genes. This is done by considering nodes for
linking reactions, only ones that appear in sufficiently strong reactant
pairs. One potential improvement to the quantification of chemical
content is to partition every chemical compound into functionally
independent groups. The amount of chemical content is measured

in terms of the number of such functionally independent groups,
instead of the absolute number of non-hydrogen atoms. Further, the
partition of a compound into functionally independent groups is
flexible yet objective, relying on at most a delineation of a set of
specific pathway-related reactions. Two atoms in a compound are
considered in the same group if they are linked by covalent bond(s)
that does not break in all the chemical transformations under that
delineation.
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