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Abstract. One of the criteria for inferring a species tree from a collection of gene
trees, when gene tree incongruence is assumed to be due to incomplete lineage
sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for infer-
ring the species tree from rooted, binary trees under MDC were recently intro-
duced. Nevertheless, in phylogenetic analyses of biological data sets, estimated
gene trees may differ from true gene trees, be incompletely resolved, and not nec-
essarily rooted. In this paper, we propose new MDC formulations for the cases
where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-
binary. Further, we prove structural theorems that allow us to extend the algo-
rithms for the rooted/binary gene tree case to these cases in a straightforward
manner. Finally, we study the performance of these methods in coalescent-based
computer simulations.

1 Introduction

Biologists have long acknowledged that the evolutionary history of a set of species—
the species tree—and that of a genomic region from those species—the gene tree—
need not be congruent; e.g., [10]. While many processes can cause gene/species tree
incongruence, such as horizontal gene transfer and gene duplication/loss, we focus in
this paper on incomplete lineage sorting, or ILS, which is best understood under the
coalescent model [13,20,21], as we illustrate in Fig. 1. The coalescent model views
gene lineages moving backward in time, eventually coalescing down to one lineage.
In each time interval between species divergences (e.g., t in Fig. 1), lineages entering
the interval from a more recent time period may or may not coalesce—an event whose
probability is determined largely by the population size and branch lengths.

Thus, a gene tree is viewed as a random variable conditional on a species tree. For
the species tree ((AB)C), with time t between species divergences, the three possible
outcomes for the gene tree topology random variable, along with their probabilities are
shown in Fig. 1. With the advent of technologies that make it possible to obtain large
amounts of sequence data from multiple species, multi-locus data are becoming widely
available, highlighting the issue of gene tree discordance [4,8,14,17,19,25].

Several methods have been introduced for inferring a species tree from a collection
of gene trees under ILS-based incongruence. Summary statistics, such as the majority-
rule consensus (e.g., [2,8]) and democratic vote (e.g., [1,3,26,27]), are fast to compute
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Fig. 1. Gene/species tree incongruence due to ILS. Given species tree ST , with constant popula-
tion size throughout and time t in coalescent units (number of generations divided by the popula-
tion size) between the two divergence events, each of the three gene tree topologies gt1, gt2, and
gt3 may be observed, with probabilities 1 − (2/3)e−t, (1/3)e−t, and (1/3)e−t, respectively.

and provide a good estimate of the species tree in many cases. However, the accuracy
of these methods suffer under certain conditions. Further, these methods do not pro-
vide explicit reconciliation scenarios; rather, they provide summaries of the gene trees.
Recently, methods that explicitly model ILS were introduced, such as Bayesian infer-
ence [5,9], maximum likelihood [7], and the maximum parsimony criterion Minimize
Deep Coalescence, or MDC [10,11,25]. We introduced the first exact algorithms for
inferring species trees under the MDC criterion from a collection of rooted, binary gene
trees [22,23]. Nevertheless, in phylogenetic analyses of biological data sets, estimated
gene trees may differ from the true gene trees, may be incompletely resolved, and may
not be rooted. Requiring gene trees to be fully resolved may result in gene trees with
wrong branching patterns (e.g., those branches with low bootstrap support) that mas-
querade as true gene/species tree incongruence, thus resulting in over-, and possibly
under-, estimation of deep coalescences.

Here we propose an approach to estimating species trees from estimated gene trees
which avoids these problems. Instead of assuming that all gene trees are correct (and
hence fully resolved, rooted trees), we consider the case where all gene trees are mod-
ified so that they are reasonably likely to be unrooted, edge-contracted versions of the
true gene trees. For example, the reliable edges in the gene trees can be identified using
statistical techniques, such as bootstrapping, and all low-support edges can be con-
tracted. In this way, the MDC problem becomes one in which the input is a set of
gene trees which may not be rooted and may not be fully resolved, and the objective
is a rooted, binary species tree and binary rooted refinements of the input gene trees,
that optimizes the MDC criterion. We provide exact algorithms and heuristics for in-
ferring species trees for these cases. We have implemented several of these algorithms
and heuristics in our PhyloNet software package [24], which is publicly available at
http://bioinfo.cs.rice.edu/phylonet, and we evaluate the performance of these algorithms
and heuristics on synthetic data.

2 Preliminary Material

Clades and clusters. Throughout this section, unless specified otherwise, all trees are
presumed to be rooted binary trees, bijectively leaf-labelled by the elements of X (that
is, each x ∈ X labels one leaf in each tree). We denote by TX the set of all binary rooted
trees on leaf-set X . We denote by V (T ), E(T ), and L(T ) the node-set, edge-set, and
leaf-set, respectively, of T . For v a node in T , we define parent(v) to be the parent of
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v in T , and Children(v) to be the children of v. A clade in a tree T is a rooted subtree
of T , which can be identified by the node in T rooting the clade. For a given tree T , we
denote the subtree of T rooted at v by CladeT (v), and when the tree T is understood,
by Clade(v). The clade for node v is Clade(v), and since nodes can have children, the
children of a clade Clade(v) are the clades rooted at the children of v. The set of all
clades of a tree T is denoted by Clades(T). The set of leaves in CladeT (v) is called
a cluster and denoted by ClusterT (v) (or more simply by Cluster(v) if the tree T is
understood). The clusters that contain either all the taxa or just single leaves are called
trivial, and the other clusters are called non-trivial. The cluster of node v is Cluster(v).
As with clades, clusters can also have children. If Y is a cluster in a tree T , then the
clade for Y within T , denoted by CladeT (Y ), is the clade of T induced by Y . The set
of all clusters of T is denoted by Clusters(T). We say that edge e in gt is outside cluster
Y if it satisfies e /∈ E(Cladegt(Y )), and otherwise that it is inside Y . Given a set
A ⊆ L(T ), we define MRCAT (A) to be the most recent (or least) common ancestor
of the taxa in A. Finally, given trees t and T , both on X , we define H : V (t) → V (T )
by HT (v) = MRCAT (Clustert(v)).

We extend the definitions of Clades(T) and Clusters(T) to the case where T is un-
rooted by defining Clades(T) to be the set of all clades of all possible rootings of T ,
and Clusters(T) to be the set of all clusters of all possible rootings of T . Thus, the sets
Clades(T) and Clusters(T) depend upon whether T is rooted or not.

Given a cluster Y ⊆ X of T , the parent edge of Y within T is the edge incident
with the root of the clade for Y , but which does not lie within the clade. When T is
understood by context, we will refer to this as the parent edge of Y .

A set C of clusters is said to be compatible if there is a rooted tree T on leaf-set S
such that Clusters(T ) = C. By [18], the set C is compatible if and only if every pair A
and B of clusters in C are either disjoint or one contains the other.

Valid coalescent histories and extra lineages. Given gene tree gt and species tree ST ,
a valid coalescent history is a function f : V (gt) → V (ST ) such that the following
conditions hold: (1) if w is a leaf in gt, then f(w) is the leaf in ST with the same la-
bel; and, (2) if w is a vertex in Cladegt(v), then f(w) is a vertex in CladeST (f(v)).
Note that these two conditions together imply that f(v) is a node on the path be-
tween the root of ST and the MRCA in ST of Clustergt(v). Given a gene tree gt
and a species tree ST , and given a function f defining a valid coalescent history of gt
within ST , the number of lineages on each edge in ST can be computed by inspec-
tion. An optimal valid coalescent history is one that results in the minimum number
of lineages over all valid coalescent histories. We denote the number of extra lineages
on an edge e ∈ E(ST ) (one less than the number of lineages on e) in an optimal
valid coalescent history of gt within ST by XL(e, gt), and we denote by XL(ST, gt)
the total number of extra lineages within an optimal valid coalescent history of gt
within ST , i.e., XL(ST, gt) =

∑
e∈E(ST ) XL(e, gt); see Fig. 2. Finally, we denote

by XL(ST,G) the total number of extra lineages, or MDC score, over all gene trees
in G, so XL(ST,G) =

∑
gt∈G XL(ST, gt). Given gene tree gt and species tree ST ,

finding the valid coalescent history that yields the smallest number of extra lineages is
achievable in polynomial time, as we now show. Given cluster A in gt and cluster B in
ST , we say that A is B-maximal if (1) A ⊆ B and (2) for all A′ ∈ Clusters(gt), if
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Fig. 2. Illustration of optimal and non-optimal reconciliations of a rooted, binary gene tree gt
with a rooted, binary species tree ST , which yield 1 and 4 extra lineages, respectively

A ⊂ A′ then A′ �⊆ B. We set kB(gt) to be the number of B-maximal clusters within gt.
Finally, we say that cluster A is ST -maximal if there is a cluster B ∈ Clusters(ST )
such that B �= X and A is B-maximal.

Theorem 1. (From [22]) Let gt be a gene tree, ST be a species tree, both binary rooted
trees on leaf-set X . Let B be a cluster in ST and let e be the parent edge of B in ST .
Then kB(gt) is equal to the number of lineages on e in an optimal valid coalescent
history. Therefore, XL(e, gt) = kB(gt) − 1, and XL(ST, gt) =

∑
B[kB(gt) − 1],

where B ranges over the clusters of ST . Furthermore, a valid coalescent history f that
achieves this total number of extra lineages can be produced by setting f(v) = HST (v)
(i.e., f(v) = MRCAST (Clustergt(v))) for all v.

In other words, we can score a candidate species tree ST with respect to a set G of
rooted binary trees with XL(ST,G) =

∑
gt∈G

∑
B∈Clusters(ST )[kB(gt)− 1]. Finally,

Corollary 1. Given collection G of k gene trees and species tree ST , each tree labelled
by the species in X , we can compute the optimal coalescent histories relating each gene
tree to ST so as to minimize the total number of extra lineages in O(nk) time, and the
MDC score of these optimal coalescent histories in O(n2k) time, where |X | = n.

The analysis of the running time follows from the following lemma:

Lemma 1. Given a rooted gene tree gt and a rooted binary species tree ST , we can
compute all HST (v) (letting v range over V (gt)) in O(n) time. We can also compute
the set of ST -maximal clusters in gt in O(n2) time.

2.1 The MDC Problem: Rooted, Binary Gene Trees

The MDC problem is the “minimize deep coalescence” problem; as formulated by
Wayne Maddison in [10], this is equivalent to finding a species tree that minimizes
the total number of extra lineages over all gene trees in G. Thus, the MDC problem can
be stated as follows: given a set G of rooted, binary gene trees, we seek a species tree
ST such that XL(ST,G) =

∑
gt∈G XL(ST, gt) is minimized.

MDC is conjectured to be NP-hard, and no polynomial-time exact algorithm is known
for this problem. However, it can be solved exactly using several techniques, as we now
show.
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Algorithms for MDC. The material in this section is from [22]. The simplest technique
to compute the optimal species tree with respect to a set G of gene trees is to compute
a minimum-weight clique of size n − 2 (where |X | = n) in a graph which we now
describe. Let G be the set of gene trees in the input to MDC, and let MDC(G) be the
graph with one vertex for each non-trivial subset of X (so MDC(G) does not contain
trivial clusters), edges between A and B if the two clusters are compatible (and so
A ∩ B = ∅, A ⊂ B, or B ⊂ A). A clique inside this graph therefore defines a set of
pairwise compatible clusters, and hence a rooted tree on X . We set the weight of each
node A to be w(A) =

∑
gt∈G [kA(gt)−1]. We seek a clique of size n−2, and among all

such cliques we seek one of minimum weight. By construction, the clique will define a
rooted, binary tree ST such that XL(ST,G) is minimized.

The graph MDC(G) contains 2n − n − 1 vertices, where n = |X |, and is therefore
large even for relatively small n. We can constrain this graph size by restricting the
allowable clusters to a smaller set, C, of subsets of X . For example, we can set C =
∪gt∈GClusters(gt) (minus the trivial clusters), and we can define MDC(C) to be the
subgraph of MDC(G) defined on the vertices corresponding to C. However, the cliques
of size n−2 in the graph MDC(C) may not have minimum possible weights; therefore,
instead of seeking a minimum weight clique of size n − 2 within MDC(C), we will
set the weight of node A to be w′(A) = Q − w(A), for some very large Q, and seek a
maximum weight clique within the graph.

Finally, we can also solve the problem exactly using dynamic programming. For
A ⊆ X and binary rooted tree T on leaf-set A, we define

lT (A,G) =
∑

gt∈G

∑

B

[kB(gt) − 1],

where B ranges over all clusters of T . We then set

l∗(A,G) = min{lT (A,G) : T ∈ TA}.

By Theorem 1, l∗(X ,G) is the minimum number of extra lineages achievable in any
species tree on X , and so any tree T such that lT (X ,G) = l∗(X ,G) is a solution to the
MDC problem on input G. We now show how to compute l∗(A,G) for all A ⊆ X using
dynamic programming. By backtracking, we can then compute the optimal species tree
on X with respect to the set G of gene trees.

Consider a binary rooted tree T on leaf-set A that gives an optimal score for l∗(A,G),
and let the two subtrees off the root of T be T1 and T2 with leaf sets A1 and A2 =
A − A1, respectively. Then, letting B range over the clusters of T , we obtain

lT (A,G) =
∑

gt∈G

∑

B

[kB(gt) − 1] =

∑

gt∈G

∑

B⊆A1

[kB(gt) − 1] +
∑

gt∈G

∑

B⊆A2

[kB(gt) − 1] +
∑

gt∈G
[kA(gt) − 1].

If for i = 1 or 2, lTi(Ai,G) �= l∗(Ai,G), then we can replace Ti by a different tree on Ai

and obtain a tree T ′ on A such that lT ′(A,G) < lT (A,G), contradicting the optimality
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of T . Thus, lTi(Ai,G) = l∗(Ai,G) for i = 1, 2, and so l∗(A,G) is obtained by taking
the minimum over all sets A1 ⊂ A of l∗(A1,G)+ l∗(A−A1,G)+

∑
gt∈G [kA(gt)−1].

In other words, we have proven the following:

Lemma 2. l∗(A,G) = minA1⊂A{l∗(A1,G) + l∗(A − A1,G) +
∑

gt∈G [kA − 1]}.

This lemma suggests the dynamic programming algorithm:

– Order the subsets of X by cardinality, breaking ties arbitrarily.
– Compute kA(gt) for all A ⊆ X and gt ∈ G.
– For all singleton sets A, set l∗(A,G) = 0.
– For each subset with at least two elements, from smallest to largest, compute

l∗(A,G) = minA1⊂A{l∗(A1,G) + l∗(A − A1,G) +
∑

gt∈G [kA(gt) − 1]}.
– Return l∗(X ,G).

There are 2n − 1 subproblems to compute (one for each set A) and each takes O(2nn)
time (there are at most 2n subsets A1 of A, and each pair A, A1 involves computing
kA for each gt ∈ G, which costs O(n) time). Hence, the running time is O(n22n) time.
However, Than and Nakhleh showed that using only the clusters of the gene trees would
produce almost equally good estimates of the species tree [22,23].

3 MDC on Estimated Gene Trees

Estimating gene trees with high accuracy is a challenging task, particularly in cases
where branch lengths are very short (which are also cases under which ILS is very
likely to occur). As a result, gene tree estimates are often unrooted, unresolved, or both.
To deal with these practical cases, we formulate the problems as estimating species
trees and completely resolved, rooted versions of the input trees to optimize the MDC
criterion. We show that the clique-based and DP algorithms can still be applied.

3.1 Unrooted, Binary Gene Trees

When reconciling an unrooted, binary gene tree with a rooted, binary species tree under
parsimony, it is natural to seek the rooting of the gene tree that results in the mini-
mum number of extra lineages over all possible rootings. In this case, the MDC prob-
lem can be formulated as follows: given a set G = {gt1, gt2, . . . , gtk} of gene trees,
each of which is unrooted, binary, with leaf-set X , we seek a species tree ST and set
G′ = {gt′1, gt′2, . . . , gt′k}, where gt′i is a rooted version of gti, so that XL(ST,G′) is
minimum over all such sets G′.

Given a species tree and a set of unrooted gene trees, it is easy to compute the optimal
rootings of each gene tree with respect to the given species tree, since there are only
O(n) possible locations for the root in an n leaf tree, and for each possible rooting we
can compute the score of that solution in O(n2) time. Thus, it is possible to compute the
optimal rooting and its score in O(n3) time. Here we show how to solve this problem
more efficiently – finding the optimal rooting in O(n) time, and the score for the optimal
rooting in O(n2) time, thus saving a factor of n. We accomplish this using a small
modification to the techniques used in the case of rooted gene trees.
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We begin by extending the definition of B-maximal clusters to the case of unrooted
gene trees, for B a cluster in a species tree ST , in the obvious way. Recall that the set
Clusters(gt) depends on whether gt is rooted or not, and that kB(gt) is the number of
B-maximal clusters in gt. We continue with the following:

Lemma 3. Let gt be an unrooted binary gene tree on X and let ST be a rooted binary
species tree onX . Let C∗ be the set of ST -maximal clusters in gt. Let e be any edge of gt
such that ∀Y ∈ C∗, e /∈ E(Cladegt(Y )) (i.e., e is not inside any subtree of gt induced
by one of the clusters in C∗). Then the tree gt′ produced by rooting gt on edge e satisfies
(1) C∗ ⊆ Clusters(gt′), and (2) XL(ST, gt′) =

∑
B∈Clusters(ST )[kB(gt)−1], which

is the best possible. Furthermore, there is at least one such edge e in gt.

Proof. We begin by showing that there is at least one edge e that is outside Y for all
Y ∈ C∗. Pick a cluster A1 ∈ C∗ that is maximal (i.e., it is not a subset of any other
cluster in C∗); we will show that the parent edge of A1 is outside all clusters in C∗.
Suppose e is inside cluster A2 ∈ C∗. Since A1 is maximal, it follows that A2 �⊆ A1.
However, if the parent edge of A2 is not inside A1, then either A2 is disjoint from A1 or
A2 contains A1, neither of which is consistent with the assumptions that A1 is maximal
and the parent edge of A1 is inside A2. Therefore, the parent edge of A2 must be inside
A1. In this case, A1 ∩ A2 �= ∅ and A1 ∪ A2 = X . Let Bi be the cluster in ST such
that Ai is Bi-maximal, i = 1, 2. Then B1 ∩ B2 �= ∅, and so without loss of generality
B1 ⊆ B2. But then A1 ∪ A2 ⊆ B1 ∪ B2 = B2 and so B2 = X . But X is the only X -
maximal cluster, contradicting our hypotheses. Hence the parent edge of any maximal
cluster in C∗ is not inside any cluster in C∗.

We now show that rooting gt on any edge e that is not inside any cluster in C∗ satisfies
C∗ ⊆ Clusters(gt′). Let e be any such edge, and let gt′ be the result of rooting gt on
e. Under this rooting, the two children of the root of gt′ define subtrees T1, with cluster
A1, and T2, with cluster A2. Now, suppose ∃A′ ∈ C∗-Clusters(gt′). Since C∗ ⊆
Clusters(gt), it follows that A′ is the complement of a cluster B ∈ Clusters(gt′). If
B is a proper subset of either A1 or A2, then the subtree of gt induced by A′ contains
edge e (since A′ = X − B), contradicting how we selected e. Hence, it must be that
B = A1 or B = A2. However, in this case, A′ is also equal to either A1 or A2, and
hence A′ ∈ Clusters(gt′), contradicting our hypothesis about A′.

We finish the proof by showing that XL(ST, gt′) is optimal for all such rooted trees
gt′, and that all other locations for rooting gt produce a larger number of extra lineages.
By Theorem 1, XL(ST, gt′) =

∑
B[kB(gt′) − 1], as B ranges over the clusters of

ST . By construction, this is exactly
∑

B [kB(gt) − 1], as B ranges over the clusters of
ST . Also note that for any rooted version gt∗ of gt, kB(gt∗) ≥ kB(gt), so that this
is optimal. Now consider a rooted version gt∗ in which the root is on an edge that is
inside some subtree of gt induced by A ∈ C∗. Let gt∗ have subtrees T1 and T2 with
clusters A1 and A2, respectively. Without loss of generality, assume that A1 ⊂ A, and
that A2 ∩ A �= ∅. Since A ∈ C∗, there is a cluster B ∈ Clusters(ST ) such that A
is B-maximal. But then A1 is B-maximal. However, since A − A1 �= ∅, there is also
at least one B-maximal cluster Y ⊂ A within T2. Hence, kB(gt∗) > kB(gt). On the
other hand, for all other clusters B′ of ST , kB′(gt∗) ≥ kB′(gt′) = kB′(gt). Therefore,
XL(ST, gt∗) > XL(ST, gt′). In other words, any rooting of gt on an edge that is not
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within a subtree induced by a cluster in A is optimal, while any rooting of gt on any
other edge produces a strictly larger number of extra lineages.

This theorem allows us to compute the optimal rooting of an unrooted binary gene tree
with respect to a rooted binary species tree, and hence gives us a way of computing the
score of any candidate species tree with respect to a set of unrooted gene trees:

Corollary 2. Let ST be a species tree and G = {gt1, gt2, . . . , gtk} be a set of un-
rooted binary gene trees. Let G′ = {gt′1, gt′2, . . . , gt′k} be a set of binary gene trees
such that gt′i is a rooted version of gti for each i = 1, 2, . . . , k, and which minimizes
XL(ST,G′). Then XL(ST,G′) =

∑
i

∑
B∈Clusters(ST )[kB(gti) − 1]. Furthermore,

the optimal G′ can be computed in O(nk) time, and the score of G′ computed in O(n2k)
time.

Solving MDC given unrooted, binary gene trees. Let G = {gt1, gt2, . . . , gtk}, as
above. We define the MDC-score of a candidate (rooted, binary) species tree ST by∑

i

∑
B∈Clusters(ST )[kB(gti)−1]; by Corollary 2, the tree ST ∗ that has the minimum

score will be an optimal species tree for the MDC problem on input G. As a result, we
can use all the techniques used for solving MDC given binary rooted gene trees, since
the score function is unchanged.

3.2 Rooted, Non-binary Gene Trees

When reconciling a rooted, non-binary gene tree with a rooted, binary species tree un-
der parsimony, it is natural to seek the refinement of the gene tree that results in the
minimum number of extra lineages over all possible refinements; see the illustration
in Fig. 3. In this case, the MDC problem can be formulated as follows: given a set
G = {gt1, gt2, . . . , gtk} in which each gti may only be partially resolved, we seek a
species tree ST and binary refinements gt∗i of gti so that XL(ST,G∗) is minimized,
where G∗ = {gt∗1, gt∗2, . . . , gt∗k}. This problem is at least as hard as the MDC problem,
which is conjectured to be NP-hard.

A Quadratic Algorithm for Optimal Refinement of Gene Trees Under MDC. We begin
with the problem of finding an optimal refinement of a given gene tree gt with respect
to a given species tree ST , with both trees rooted.

A B C D E
binary gene tree gt'2

A B C D E
binary gene tree gt'1

EDCBA

02

1

optimal reconciliation

refinereconcile refine reconcile

optimal refinement non-optimal refinement

A B C D E
unresolved gene tree gt

EDCBA

00

0

optimal reconciliation

Fig. 3. Illustration of optimal and non-optimal reconciliations of a rooted, non-binary gene tree
gt with a rooted, binary species tree ST , which yield 0 and 3 extra lineages, respectively
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Definition 1. (Optimal tree refinement w.r.t. MDC (OTRMDC))

Input: Species tree ST and gene tree gt, both rooted and leaf-labelled by set X of
taxa.
Output: Binary rooted tree gt∗ refining gt that minimizes XL(ST, t) over all re-
finements t of gt. We denote gt∗ by OTRMDC(ST, gt).

We show that OTRMDC(ST, gt) can be solved in O(n2) time, where n is the number
of leaves in either tree. For B ∈ Clusters(ST ) and gene tree gt, we define FB(gt) to
be the number of nodes in gt that have at least one child whose cluster is B-maximal.
We will show that for a given rooted gene tree gt and rooted binary species tree ST , the
optimal refinement t∗ of gt will satisfy XL(ST, t∗) =

∑
B∈Clusters(ST )[FB(gt)− 1].

Therefore, to compute the score of the optimal refinement of one gene tree gt, it suffices
to compute FB(gt) for every B ∈ Clusters(ST ).

The algorithm to compute the score of the optimal refinement of gt first computes
the set of B-maximal clusters, which takes O(n) time by Lemma 1. It then computes
FB(gt), for each B; this requires an additional O(n) time per B, for a total cost of
O(n2) time.

Algorithm for OTRMDC(ST, gt): To compute the optimal refinement, we have a
slightly more complicated algorithm.

Step 1: Preprocessing. We begin by computing HST (v) for every node v ∈ V (gt),
as described above; this takes O(n) time overall.

Step 2: Refine at every high degree node. We then visit each internal node v of gt
that has more than two children, and we modify the tree gt locally at v by replacing
the rooted star tree at v by a tree defined by the topology induced in ST by the images
under the mapping HST of v and v’s children. The order in which we visit the nodes is
irrelevant.

We now make precise how this modification of gt at node v is performed. We denote
by Tree(ST, gt, v) the tree formed as follows. First, we compute the subtree of ST
induced by the images of v and its children under the HST mapping. If a child y of v
is mapped to an internal node of the induced subtree, we add a leaf ly and make it a
child of HST (y); in this way, the tree we obtain has all the nodes in Children(v) iden-
tified with distinct leaves in Tree(ST, gt, v). (Although ST is assumed to be binary,
Tree(ST, gt, v) may not be binary.) After we compute Tree(ST, gt, v), we modify gt
by replacing the subtree of gt induced by v and its children with Tree(ST, gt, v). The
subtree within the refinement that is isomorphic to Tree(ST, gt, v) is referred to as the
local subtree at v.

Step 3: Completely refine if necessary. Finally, after the refinement at every node is
complete, if the tree is not binary, we complete the refinement with an arbitrary refine-
ment at v.

Theorem 2. Algorithm OTRMDC(ST, gt) takes O(n2) time, where ST and gt each
have n leaves.

It is clear that the algorithm is well-defined, so that the order in which we visit the nodes
in V (gt) does not impact the output.
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Observation 1. Let gt be an arbitrary rooted gene tree, gt′ a refinement of gt, and ST
an arbitrary rooted binary species tree. Then kB(gt′) ≥ FB(gt) for all clusters B of
ST .

Theorem 3. Let gt be an arbitrary rooted gene tree, ST an arbitrary rooted binary
species tree, t the result of the first two steps of OTRMDC(ST, gt), and t∗ an arbitrary
refinement of t (thus t∗ = OTRMDC(ST, gt)). Then for all B ∈ Clusters(ST ),
FB(gt) = FB(t∗) and no node in t or t∗ has more than one B-maximal child.

Proof. Step 2 of OTRMDC(ST, gt) can be seen as a sequence of refinements that
begins with gt and ends with t, in which each refinement is obtained by refining around
a particular node in gt. The tree t∗ = OTRMDC(ST, gt) is then obtained by refining t
arbitrarily into a binary tree, if t is not fully resolved. Let the internal nodes of gt with
at least three children be v1, v2, . . . , vk. Thus, gt = gt0 → gt1 → gt2 → . . . → gtk =
t → t∗, where gti → gti+1 is the act of refining at node vi+1, and t → t∗ is an arbitrary
refinement.

We begin by showing that FB(gti) = FB(gti+1), for i = 0, 1, 2, . . . , k−1. When we
refine at node vi, we modify the tree gti−1 by replacing the subtree immediately below
node vi by Tree(ST, gt, vi), producing the local subtree below vi. Fix a cluster B ∈
Clusters(ST ). If the cluster for vi in gti−1 does not have any B-maximal children,
then refining at vi will not change FB , and hence FB(gti−1) = FB(gti). Otherwise, vi

has at least one B-maximal child in gti−1. Since vi is not B-maximal within gti−1, vi

also has at least one child in gti−1 that is not B-maximal. Hence, the tree gti produced
by refining gti−1 at vi (using Tree(ST, gti, vi)) contains a node y that is an ancestor of
all the B-maximal children of vi within gti−1 and not the ancestor of any other children
of vi in gti−1. Therefore, the cluster for y is B-maximal within gti, and no other node
that is introduced during this refinement is B-maximal within gti. Therefore within the
local subtree at vi in gti there is exactly one node that defines a B-maximal cluster,
and exactly one node that is the parent of at least one B-maximal cluster. As a result,
FB(gti−1) = FB(gti).

This argument also shows that any node in the local subtree at vi that is the parent of
at least one B-maximal cluster is the parent of exactly one B-maximal cluster. On the
other hand, if vi does not have any B-maximal child in gti−1, then there is no node in
vi’s local subtree that has any B-maximal children. In other words, after refining at node
vi, any node within the local subtree at vi that has one or more B-maximal children has
exactly one such child. As a result, at the end of Step 2 of OTRMDC(ST, gt), every
node has at most one B-maximal child, for all B ∈ Clusters(ST ).

The last step of the OTRMDC algorithm produces an arbitrary refinement of t =
gtk, if it is not fully resolved. But since no node in gtk can have more than one B-
maximal child, if t∗ is a refinement of t = gtk then FB(t) = FB(t∗).

Theorem 4. Let gt be a rooted gene tree, ST a rooted binary species tree, both on set
X , t the result of the first two steps of OTRMDC(ST, gt), and t∗ any refinement of t.
Then XL(ST, t∗) =

∑
B∈Clusters(ST )[FB(gt) − 1], and t∗ is a binary refinement of

gt that minimizes XL(ST, t′) over all binary refinements t′ of gt.

Proof. Let B be an arbitrary cluster in ST . By Theorem 3, FB(t∗) = FB(gt). Also
by Theorem 3, no node in t has more than one B-maximal child, and so kB(t) =
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FB(t). Since t∗ is an arbitrary refinement of t, it follows that kB(t∗) = FB(t∗), and
so kB(t∗) = FB(gt). By Observation 1, for all refinements t′ of gt, kB(t′) ≥ FB(gt).
Hence kB(t′) ≥ kB(t∗) for all refinements t′ of gt. Since this statement holds for an
arbitrary cluster B in ST , it follows that XL(ST, t′) ≥ XL(ST, t∗) for all refinements
t′ of gt, establishing the optimality of t∗.

Corollary 3. Let ST be a species tree and G = {gt1, gt2, . . . , gtk} be a set of gene
trees that may not be resolved. Let G∗ = {gt∗1, gt∗2, . . . , gt∗k} be a set of binary gene
trees such that gt∗i refines gti for each i= 1, 2, . . . , k, and which minimizes XL(ST,G∗).
Then XL(ST,G∗) =

∑
i

∑
B∈Clusters(ST )[FB(gti) − 1]. Furthermore, the optimal

resolution of each gene tree and its score can be computed in O(n2k) time.

Solving MDC given rooted, non-binary gene trees. Corollary 3 allows us to compute
the score of any species tree with respect to a set of rooted but unresolved gene trees. We
can use this to find optimal species trees from rooted, non-binary gene trees, as we now
show. Let G be a set of rooted gene trees that are not necessarily binary. By Corollary
3, we can formulate the problem as a minimum-weight clique problem. The graph has
one vertex for every subset of X , and we set the weight of the vertex corresponding to
subset B to be w(B) =

∑
gt∈G [FB(gt) − 1]. We have edges between vertices if the

two vertices are compatible (can both be contained in a tree). The solution is therefore
a minimum weight clique with n − 2 vertices. And, as before, we can describe this as
a maximum weight clique problem by having the weight be w′(B) = Q − w(B), for
some large enough Q.

However, we can also address this problem using dynamic programming, as before.
Let A ⊆ X and T ∈ TA. Let lT (A,G) =

∑
gt∈G

∑
B[FB(gt) − 1], as B ranges over

the clusters of T . Let l∗(A,G) = minT∈TA{lT (A,G)}. Then l∗(X ,G) is the solution
to the problem of inferring a species tree from rooted, non-binary gene trees.

We set base cases l∗({x},G) = 0 for all x ∈ X . We order the subproblems by the
size of A, and compute l∗(A,G) only after every l∗(A′,G) is computed for A′ ⊂ A.
The DP formulation is

l∗(A,G) = min
A1⊂A

{l∗(A1,G) + l∗(A − A1,G) +
∑

gt∈G
[FA(gt) − 1]}.[−5mm]

3.3 Unrooted, Non-binary Gene Trees

When reconciling an unrooted and incompletely resolved gene tree with a rooted, binary
species tree under parsimony, it is natural to seek the rooting and refinement of the gene
tree that results in the minimum number of extra lineages over all possible rootings
and refinements; see the illustration in Fig. 4. In this case, the MDC problem can be
formulated as follows: given a set G = {gt1, gt2, . . . , gtk}, with each gti a tree on X ,
but not necessarily rooted nor fully resolved, we seek a rooted, binary species tree ST
and set G′ = {gt′1, gt′2, . . . , gt′k} such that each gt′i is a binary rooted tree that can be
obtained by rooting and refining gti, so as to minimize XL(ST,G′) over all such G′.
As before, the computational complexity of this problem is unknown, but conjectured
to be NP-hard.
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Fig. 4. Illustration of optimal and non-optimal reconciliations of an unrooted, non-binary gene
tree gt with a rooted, binary species tree ST , which yield 0 and 3 extra lineages, respectively

Observation 2. For any gene tree gt and species tree ST , and t∗ the optimal refined
rooted version of gt that minimizes XL(ST, t∗) can be obtained by first rooting gt at
some node, and then refining the resultant rooted tree. Thus, to find t∗, it suffices to find
a node v ∈ V (gt) at which to root the tree t, thus producing a tree t′, so as to minimize∑

B∈Clusters(ST )[FB(gt′) − 1].

From this, the following theorem follows:

Theorem 5. Let gt be an unrooted, not necessarily binary gene tree on X , and let ST
be a rooted species tree on X . Let A ∈ Clusters(gt) be a largest ST -maximal cluster,
and v be the neighbor of the root of the clade for A that is in A. If we root gt at v, then
the resultant tree gt′ minimizes

∑
B∈Clusters(ST )[FB(gt′)−1] over all rooted versions

gt′ of t.

And, therefore,

Theorem 6. Let T be a set of gene trees that are unrooted and not necessarily bi-
nary. For B ⊂ X , define tB to be the rooted version of t formed by rooting t
at a node v, as given by Theorem 5. Then, the species tree ST that minimizes∑

t∈T
∑

B∈Clusters(ST )[FB(tB) − 1] is an optimal solution to the problem.

As a result, we can solve the problem using the clique and DP formulations as in the
other versions of the MDC problem.

4 Experimental Evaluation

4.1 Methods

Simulated data. We generated species trees using the “Uniform Speciation” (Yule)
module in the program Mesquite [12]. Two sets of species trees were generated: one
for 8 taxa plus an outgroup, and one for 16 taxa plus an outgroup. Each data set had
500 species trees. All of them have a total branch length of 800,000 generations ex-
cluding the outgroup. Within the branch of each species tree, 1, 2, 4, 8, 16, or 32 gene
trees were simulated using the “Coalescence Contained Within Current Tree” module
in Mesquite with the effective population size Ne equal 100,000. We sampled one al-
lele per species. We used the program Seq-gen [15] to simulate the evolution of DNA
sequences of length 2000 under the Jukes-Cantor model [6] down each of the gene trees
(these settings are similar to those used in [11]).
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Estimated gene trees. We estimated gene trees from these sequence alignments using
default PAUP* heuristic maximum parsimony (MP) methods, returning the strict con-
sensus of all optimal MP trees. We rooted each estimated tree at the outgroup in order
to produce rooted estimated trees.

Estimated species trees. The “heuristic’ version of our method uses only the clusters of
the input gene trees, and the “exact” version uses all possible clusters on the taxon set.
For some analyses using the heuristic MDC algorithms, the estimated species tree is not
fully resolved. In this case, we followed this initial analysis with a search through the
set of binary resolutions of the initial estimated species tree for a fully resolved tree that
optimized the number of extra lineages. This additional step was limited to 5 minutes
of analysis. The only cases where this additional search was not applied were when the
polytomy (unresolved node) in the species tree was present in all gene trees; in these
cases, any resolution is arbitrary and is as good (under the MDC) criterion as any other
resolution.

For the 8-taxon data sets, we used both the exact and heuristic versions of all four
algorithms. For the 16-taxon data sets, we used only the heuristic versions.

Measurements. We report the degree of resolution of each estimated gene tree, which
is the number of internal branches in t divided by n − 3, where t has n leaves. We also
report the Robinson-Foulds (RF) error [16] of estimated trees to the true trees, where the
RF error is the total number of edges in the two trees that define bipartitions that are not
shared by the other tree, divided by 2n − 6. A value 0 of the RF distance indicates the
two trees are identical, and a value of 1 indicates the two trees are completely different
(they disagree on every branch).

4.2 Results

The degree of resolution of the reconstructed gene trees was around 0.6 in the case of
8-taxon gene trees, and around 0.5 in the case of 16-taxon gene trees.

With respect to topological accuracy of the estimated gene trees, we found that for 8
taxa, the RF distance is around 0.21. However, 98% of the estimated gene trees have no
false positives; thus, all but 2% of the estimated gene trees can be resolved to match the
true gene tree. Similarly, the RF distance for the 16-taxon data sets between true gene
trees and reconstructed gene trees is around 0.27, but 96% have 0 false positive values.

We now discuss topological accuracy of the species trees estimated using our algo-
rithms for solving the MDC problem. We show results on running the exact and heuris-
tic versions of the algorithms on 8 taxon estimated gene trees in Figure 5. These results
show that increasing the number of gene trees improves the accuracy of the estimated
species tree, and that very good accuracy is obtainable from a small number of gene
trees. We also see that knowing the true root instead of estimating the root is helpful
when the number of gene trees is very small, but that otherwise our algorithm is able to
produce comparable results even on unrooted gene trees. The results also show that the
heuristic version of our algorithm is as accurate as the exact version once there are four
or more gene trees (and almost identical in accuracy for two gene trees).
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Fig. 5. Performance of MDC methods on estimated gene trees with 8 taxa. Left: MDC on esti-
mated gene trees with correct roots. Right: MDC on unrooted estimated gene trees.
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