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INFERENCE OF PARSIMONIOUS SPECIES TREES FROM MULTI-LOCUS DATA BY
MINIMIZING DEEP COALESCENCES

CUONG THAN AND LUAY NAKHLEH

Abstract. One approach for inferring a species tree from a given multi-locus data set entails computing

a tree that optimizes a certain criterion. In 1997, W. Maddison proposed “minimizing deep coalescences”,
or MDC, as one such criterion. This is a parsimonious criterion that, roughly speaking, seeks the tree that

minimizes a quantity called extra lineages when all gene trees are reconciled within its branches. Recently, we

developed the first exact algorithms for finding the optimal tree under the MDC criterion; these algorithms
are guaranteed to find the tree (or trees) that minimizes the number of extra lineages when all input gene

trees are reconciled within its branches. These exact algorithms, while taking time that is asymptotically

exponential in the number of species under consideration, are capable of analyzing data sets of tens of species
and thousands of loci in seconds or minutes.

In this chapter, we report on those algorithms, highlighting the computational techniques underlying

their development, which we believe may be helpful in achieving algorithmic improvements in more compute-
intensive criteria, such as maximum likelihood. Further, we show how these algorithmic solutions deal with

gene trees that are not necessarily binary, and how to use them on data sets with multiple individuals.

While guaranteeing the optimality of the solution entails considering all possible clusters of the taxa under
study, we investigate the performance of those solutions when restricted to the set of clusters displayed by

the gene trees. In practice, this latter set is much smaller than the set of all clusters, and hence it leads

to drastic improvement in the speed of the methods, particularly for very large (in terms of the number of
species) data sets.

We have implemented our algorithms in the PhyloNet software package, which is freely available at
http://bioinfo.cs.rice.edu/phylonet. Using this implementation, we demonstrate the accuracy of trees

inferred as well as the speed, on a large number of simulated data sets.

1. Introduction

The task of inferring phylogenetic relationships of species is commonplace in evolutionary biology, and
its significance goes beyond evolutionary biology. The increasing availability of whole-genome sequences in
general, and multi-locus data sets in particular, presents both an opportunity and a challenge for addressing
this important task. On the one hand, using multiple loci generally gives a better signal for phylogenetic
relationships. On the other hand, evidence of massive incongruence among the evolutionary histories of
loci has given rise to a new level of complexity: while traditional phylogenetic approaches had to consider
mutations at the nucleotide level, new approaches have to explicitly incorporate incongruence among the
loci’s evolutionary histories as well.

Maddison proposed a parsimony-based criterion for inferring species trees from gene trees by minimizing
the number of extra lineages, or minimizing deep coalesces (MDC) [5]. Maddison and Knowles implemented a
heuristic approach based on this criterion [6]. However, no exact algorithms for computing the MDC criterion
exist. We recently provided a two-stage heuristic for inferring the species tree under a similar criterion [15].
More recently, we provided a formal definition of the notion of extra lineages and the first exact algorithms—
an integer linear programming (ILP) algorithm and a dynamic programming (DP) algorithm—for finding
the optimal species tree topology from a set of gene tree topologies, under the MDC criterion [12]. We also
demonstrated the accuracy and efficiency with which species trees were inferred using our exact algorithms
on the yeast data set of [10], the Apicomplexan data set of [4], and a large number of data sets simulated
under the coalescent model. However, all these analyses were conducted on data sets that contained only
binary trees, and with exactly one individual sampled per species for each of the loci.

In this chapter, we review the concepts of compatibility graphs of clusters induced by a set of gene trees,
as well as by the set of all clusters (i.e., all subsets) of a given set of taxa (Section 2). Further, we revisit the
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concept of valid coalescent histories [3], as it is the basis for defining the notion of extra lineages (Section 3).
These two structures form the basis for our exact algorithms [12], which we review in Section 4. As the
algorithms of [12] and the analyses therein assumed binary trees, with exactly a single individual per species,
we describe how to extend the algorithms to non-binary gene trees and data sets in which multiple individuals
may be sampled (Section 5).

We have implemented both exact algorithms in the PhyloNet software package [14]. We show the perfor-
mance of the MDC criterion in Section 6. Using the simulation protocol and parameters of [6], we study the
performance of the MDC criterion on a large number of 8-taxon simulated data sets, with numbers of loci
and alleles taken from the set {1, 3, 9, 27}. The results of our study show that the criterion is accurate for
inferring species trees, particularly as the numbers of loci used and individuals sampled increase, indicating
patterns of statistical consistency under the simulation conditions used. Further, we consider in Section 7
the question of whether it is sufficient to consider only the clusters of taxa supported by the input gene
trees for inferring an optimal tree under MDC. While in theory one can devise examples to show this is
not necessarily the case, our simulation results indicate that under realistic conditions, the answer to this
question is positive. Finally, we illustrate in Section 8 how to use PhyloNet to run the methods described in
this chapter.

In summary, the chapter is organized into two main parts: the first part covers the technical details behind
the methods (Sections 2–5), and the second part covers the performance, as well as illustrations of how to
use the PhyloNet software package to run the methods described here (Section 6–8). The reader who may
be interested mainly in the performance of the methods and how to run them, can skip the first part and go
directly to the second.

The computational efficiency of our methods, coupled with the promising properties of the MDC criterion,
makes our methods particularly applicable to large, genome-scale data sets.

2. Trees, Clusters, and the Compatibility Graph

Let T be a rooted phylogenetic tree on a set X of species taxa (species names); i.e., each leaf of T is
uniquely labeled by exactly one element of X . For example, trees T1, T2, and T3 in Figure 1 are rooted
phylogenetic trees on X = {a, b, c, d, e}. We denote by L(T ) the set of leaves of T , and by E(T ) the set of
internal edges of T , plus one edge, called re, incident into the root of T . If T is binary (i.e., every internal
node has exactly two children), then E(T ) has |L(T )| − 1 edges1. For example, for tree T1 in Figure 1, using
the labelings of the leaves and edges, we have L(T1) = {a, b, c, d, e} and E(T1) = {1, 2, 3, 4}.

We assume in this chapter that the edges in E(T ) are labeled via a post-order numbering, which means that
an edge e is labeled by a number that is larger than the numbers labeling the edges “under” (or, descendants
of) e. Further, we assume that the edges emanating from the same node are labeled in increasing order from
“left” to “right.” See the labelings of T1, T2, and T3 in Figure 1 for an illustration. Let us denote such a
labeling by a bijection hT : E(T ) → {1, . . . , |E(T )|} that satisfies the following two conditions: (1) for all
e1, e2 ∈ E(T ), e1 being a child edge of e2, then hT (e1) < hT (e2); and (2) for all e1, e2 ∈ E(T ), e1 being a
left child edge and e2 being a right child edge of the same node, then hT (e1) < hT (e2).

A cluster is defined as a nonempty subset of X . A tree T defines a set CT = {cTe : cTe ⊆ X , e ∈ E(T )}
of induced clusters, where cTe is the set of all leaf labels in X which are “under” edge e in T . Since each
edge e = (u, v) in a rooted tree is uniquely defined by its head v, cTe is equivalent to cT (v), which is the
set of all leaves under node v. For example, we have cT1

1 = ab2 and cT3
3 = bde, and the sets of all induced

clusters for T1, T2, and T3 in Figure 1 are CT1 = {ab, abc, abcd, abcde}, CT2 = {ab, ce, cde, abcde}, and
CT3 = {ac, be, bde, abcde}, respectively.

For a cluster A (i.e., a subset) of X , we denote by MRCAT (A) the most recent common ancestor, or
MRCA (also known as the least common ancestor, or lca) of taxa in A in tree T . For two clusters A and
B (each of which is a subset of taxa from X ), we say that they are compatible if there exists a tree T ,
leaf-labeled by X , with two nodes u and v in T such that cT (u) = A and cT (v) = B. In other words, A
and B are compatible if there exists a tree that induces both of them. Mathematically, this is equivalent to

1|A| denotes the cardinality of set A. For example, |{a, b, c}| = 3.
2In this context, a string x1x2 · · ·xk denotes the set {x1, x2, . . . , xk} of leaf labels. For example, the string ab corresponds

to the cluster {a, b}.
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Figure 1. Three rooted phylogenetic trees T1, T2, and T3, over the taxon-set {a, b, c, d, e}. The
compatibility graph (d) that is built from clusters induced by the three trees. Each vertex of the
graph corresponds to a cluster (a string next to it), and two vertices are adjacent (i.e., connected
by an edge) if the two clusters they represent are compatible.

the condition that either A ⊆ B, B ⊆ A, or A ∩ B = ∅. For example, the clusters A = ab and B = abcd
are compatible, whereas the clusters C = abc and D = bcd are incompatible. A nonempty collection of
pairwise-compatible clusters uniquely defines a rooted tree [8].

Given a collection G of trees, each of which is leaf-labeled by X , we define the compatibility graph of G ,
denoted by CG(G ) = (V,E), where

• V =
(⋃

g∈G Cg

)
\X and

• E = {(c1, c2) : c1, c2 ∈ V, c1 and c2 are compatible.}
In other words, the compatibility graph CG(G ) contains one node per cluster that is induced by at least one
of the gene trees (each cluster appears only once, even if it is induced my multiple gene trees), and an edge
connects two nodes in the graph if their corresponding clusters are compatible. For example, the graph in
Figure 1(d) is the compatibility graph of the three given trees. Since the cluster X is compatible with every
other cluster, we omit it from the compatibility graph.

It is worth mentioning that various properties of the compatibility graph may reflect certain characteristics
of the tree data set G . For example, if the number of nodes in CG(G ) is close to |X | − 2, which is the
number of internal edges of a binary tree on X , then the amount of incongruence among the trees in G is
very small—i.e., it may be an “easy” set of trees to reconcile. Further, each node in CG(G ) can be weighted
by the number of trees in which the cluster appears. Then, a node with high weight and high connectivity
indicates a cluster that is compatible with a large number of the trees in G ; from an inference perspective,
such a cluster may be a good candidate to include in the species tree estimate that reconciles the trees in
G . Notice that each of the trees in G is a clique3 in CG(G ).

The notion of a compatibility graph can be extended to all clusters of taxa in X . More formally, the
compatibility graph of X , denoted by CG(X ), is the graph (V,E), where

• V = {c : c ⊆X , c 6= ∅} and
• E = {(c1, c2) : c1, c2 ∈ V, c1 and c2 are compatible.}

Given a set X of taxa, the compatibility graph CG(X ) contains 2n − 1 nodes, where |X | = n. The set
of all maximal cliques in CG(X ) corresponds to the set of all binary trees on X . In other words, CG(X )
provides a compact representation of the much larger set of all trees leaf-labeled by X (there are (2n− 3)!!
rooted binary phylogenetic trees on X ).

In the algorithms we describe below, CG(X ) needs to be used in order to guarantee optimality. However,
we show empirically that, under the conditions we consider, CG(G ) is sufficient. This is a crucial observation
for the feasibility of algorithms since in practice, for given sets of gene trees from biological data, the graph
CG(G ) is much smaller than CG(X ). For example,

• CG(G ) has 17 vertices for the 106 gene trees in the 8-species yeast data set of [10]. For this data
set, CG(X ) has 255 vertices;

3A clique in a graph G = (V, E) is a subgraph (V ′, E′) of G such that every two vertices in V ′ are adjacent.
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• CG(G ) has 37 vertices for the 268 gene trees in the 8-species Apicomplexan data set of [4]. For this
data set, CG(X ) has = 255 vertices; and

• CG(G ) has 36 vertices for the 1898 gene trees in the 9-strain Staphylococcus aureus data set of [15].
For this data set, CG(X ) has 512 vertices.

3. Valid Coalescent Histories, Extra Lineages, and the MDC Criterion

Under the coalescent model, the gene tree is viewed as a random variable conditional on the species tree
that contains it. In this respect, given a gene tree topology g and a species tree topology Ψ, there is a finite,
well-defined set of coalescent scenarios within the branches of Ψ, each of which can give rise to g—each such
scenario is called a valid coalescent history [3]. The clades of leaves in g can potentially coalesce on any of
the branches in Ψ provided that two conditions are satisfied:

C1: clade c of g coalesces on a branch that is on the path between the MRCA of c and the root of Ψ, or
on the edge incident into the root of Ψ.

C2: the order in which the clades of g coalesce on the branches of Ψ is consistent with the topology of g.

For example, in Figure 2, clade {C,E} in the gene tree g can coalesce on either branch 3 or branch 4 in the
species tree Ψ, but cannot coalesce on either of the two branches 1 and 2. If both conditions are satisfied,
then the coalescent scenario is considered a valid coalescent history. The set of all valid coalescent histories
of a gene tree g, given a species tree Ψ, is denoted by HΨ(g).
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(a) Species tree Ψ (b) Gene tree g (c) h ∈ HΨ(g)

Figure 2. A species tree Ψ (a) and a gene tree g (b), with the branches of Ψ labeled in a post-
order manner. (c) A valid coalescent history of g within the branches of Ψ, which corresponds to
line 4 in Table 1. The solid circles indicate the coalescent events.

Let us consider the pair of species and gene trees, Ψ and g, respectively, in Figure 2. The tree g contains
four clades (including the one that contains all leaves, and excluding all the ones that include only a single
leaf): (A,B), (C,E), ((C,E),D), and ((A,B),((C,E),D)). The set of all valid coalescent histories of g within
the branches of Ψ is given in Table 1. Each valid coalescent history is given by the set of branch labels in Ψ
on which the clades of g coalesce.

We now define the concept of valid coalescent history formally.

Definition 1. Given a species tree Ψ and a gene tree g, both leaf-labeled with set X of species taxa, a (valid)
coalescent history is a mapping α : Cg → E(Ψ), such that:

(1) For every X ∈ Cg, X ⊆ cΨα(X), and
(2) For every two edges e1, e2 ∈ E(g), if e1 is a child edge of e2 then hΨ(α(e1)) ≤ hΨ(α(e2)).

Conditions (1) and (2) of Definition 1 correspond to conditions C1 and C2 above. We have recently
presented an algorithm for enumerating the set HΨ(g) for a given pair of trees, Ψ and g [13]. Further,
Rosenberg [11] presented a different techniques for enumerating this set.

4



D
RAFT

Table 1. The set HΨ(g) of all valid coalescent histories of the gene tree g given the species tree
Ψ, both of which are shown in Figure 2. Coalescent history (4) is illustrated in Figure 2(c). The
rightmost column provides the number of extra lineages arising from each coalescent history.

Coalescent history Clades of the gene tree Number of extra lineages
(A,B) (C,E) ((C,E),D) ((A,B),((C,E),D))

1 1 3 3 4 1
2 1 3 4 4 2
3 1 4 4 4 3
4 4 3 3 4 2
5 4 3 4 4 3
6 4 4 4 4 4

Given a valid coalescent history of a gene tree g within the branches of species tree Ψ, we can count the
number of extra lineages4 resulting from this coalescence history. This is the sum, over all branches in Ψ,
of the number of lineages in a branch minus 1. For example, let us consider coalescent history (4) from
Table 1, which is illustrated in Figure 2(c). This history contributes one extra lineage on branch 1, one extra
lineage on branch 2, no extra lineages on branch 3, and no extra lineages on branch 4—a total of two extra
lineages. We denote by XL(Ψ, g) the minimum number of extra lineages contributed by a valid coalescent
history for a gene tree g, where the minimum is taken over all histories in HΨ(g). The rightmost column in
Table 1 gives the number of extra lineages contributed by each of the six valid coalescent histories. Valid
coalescent history 1 contributes the smallest number of extra lineages; hence, XL(Ψ, g) = 1, for the trees Ψ
and g shown in Figure 2. We can generalize this notion to a set G of gene trees as

(1) XL(Ψ,G ) =
∑
g∈G

XL(Ψ, g).

The cardinality of HΨ(g) can be exponential in the size of the trees, which implies that a brute-force
approach to computing XL(Ψ,G ), by which all valid coalescent histories are enumerated explicitly and the
one resulting in the minimum number of extra lineages is selected, is infeasible. We review below an efficient
algorithm that we [12] have developed recently for computing this quantity.

Finally, we are in position to define the MDC-T problem—the problem of inferring the species tree from
a set of gene trees under the minimize deep coalescence, or MDC, criterion.

Definition 2. (The MDC-T Problem)
Input: Set G of gene trees.
Output: Ψ∗ = argminΨXL(Ψ,G ).

Maddison and Knowles [6] developed a heuristic for solving the MDC-T problem. However, the heuristic
is not guaranteed to compute the optimal solution. We have recently developed the first exact algorithms
to the problem and demonstrated their efficiency, showing that they runs in seconds on data sets with tens
of taxa and thousands of loci [12]. Further, both in [6] and [12], the performance of MDC as a criterion for
inferring the species tree was shown to be very good on both biological and synthetic data sets. In the next
two sections, we give the details of how to solve the MDC-T problem exactly.

4. Exact Algorithms for the MDC Problem

In this section we review two algorithms that we [12] developed recently for solving the MDC-T problem
exactly; i.e., given a set G of gene trees, both algorithms find a tree Ψ∗ such that XL(Ψ∗,G ) is minimum
over all possible trees Ψ. These two algorithms make use of the central observation we made in [12] that the
number of extra lineages on each branch of a given species tree topology can be computed independent of
the other branches (Lemma 1 in [12]). Further, we have the following result.

4Intuitively, an extra lineage results from the failure of two lineages to coalesce on a branch in the species tree, resulting in
two lineages “exiting” that branch, instead of a single lineage, which would have been the case had they coalesced.
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Theorem 1. (From [12]) Let (u, v) be a branch in the species tree Ψ, and let t1, . . . , tk be all the maximal
clades of gene tree g such that L(ti) ⊆ cΨ(v) for 1 ≤ i ≤ k. Then, the number of extra lineages on branch
(u, v) is β(cΨ(v), g) = k − 1.

For example, let ((A,B), C) be a clade in the species tree Ψ and let c1 = (A, (B,C)) be a clade in gene
tree g1. There is only one maximal clade of g1 that satisfies the condition of Theorem 1; hence, the number
of extra lineages is 0. Indeed, in a parsimonious reconciliation, all three alleles from A, B, and C would
coalesce on the branch above the clade ((A,B), C), and that branch would not have any extra lineages.

Now, consider clade ((A,B), (C,D)) in gene trees g2. Based on Theorem 1, there are two maximal clades
that satisfy the theorem’s condition: clade (A,B) and clade (C). Therefore, the number of extra lineages is
1. Indeed, since C coalesces with D before their MRCA coalesces with the MRCA of A and B, the branch
over the clade ((A,B), C) in the species tree would have an extra lineage when reconciling g2 within the
branches of Ψ using MDC.

As we will show below, using Theorem 1, it is possible to compute the minimum number of extra lineages
without explicitly searching the species tree space and computing the number of extra lineage for each tree
in the space. In other words, Theorem 1 allows us to avoid the search that is implemented in the heuristic
of Maddison and Knowles [6]. We are now in position to describe both exact algorithms for the MDC-T
problem.

4.1. An Integer Linear Programming Algorithm. Linear programming (LP) is an algorithmic tech-
nique for maximizing or minimizing a linear objective function, cx, where c is a vector of coefficients and x
is a vector of variables, subject to a set of linear constraints Ax ≤ b, where A is a matrix of coefficients and
b is a vector of coefficients. This is usually written in the form

max/min: cx,
subject to: Ax ≤ b.

When the variables x are required to be integers, the problem becomes an integer linear programming
(ILP). Solving an ILP problem is NP-hard in general, yet powerful solvers for (I)LP problems exist, both
in open source and commercially. We now show how to use ILP to optimize the MDC criterion. Using the
compatibility graph CG(X ) of a set of taxa X , we want to find the maximal clique of CG(X ) that solves
the MDC-T problem.

Constructing the weighted compatibility graph. Since we seek a clique in CG(X ) that is maximal in terms
of size (so as to obtain as resolved a tree as possible) and minimal in the number of extra lineages resulting
from reconciling the trees of G within its branches, we assign weights to the vertices of CG(X ) in a special
way. Let v be a vertex in the graph CG(X ) (i.e., v corresponds to a subset of X ) and let A be the cluster
it represents. For each gene tree g ∈ G , we count the number of extra lineages contributed by A as described
in Theorem 1. In total, having cluster A in the species tree Ψ results in

∑
g∈G β(A, g) extra lineages. Let m

be the maximum value of
∑
g∈G β(A, T ) over all possible clusters A. We assign to vertex v the weight

(2) w(v) = m+ 1−
∑
g∈G

β(A, g).

Roughly speaking, the weight of a vertex v corresponds to a quantity that reflects the number of extra
lineages arising from having the cluster associated with v in the species tree. In the next paragraph, we
further elaborate on this weighting scheme.

Finding the tree in the compatibility graph. A clique in the compatibility graph G defines a tree, and we
seek a clique in G such that, on one hand, it has as many vertices as possible (to obtain maximal resolution of
the species tree), and on the other hand, the number of extra lineages contributed by its vertices, as defined
above, is as small as possible. The way we assign weights to vertices of the compatibility graph CG(X )
allows us to achieve both goals simultaneously.

We seek a maximum vertex-weighted clique in the compatibility graph CG(X ). This clique is clearly a
maximal one, because each vertex is assigned a positive weight by function w(v), which guarantees having
the maximum number possible of compatible clusters in the species tree. Moreover, because we maximize
the clique weight, by the definition of function w(v), we in fact minimize the total number of extra lineages
(among all cliques of the same size).
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Let V and E be the sets of nodes and edges, respectively, in CG(X ). Then, finding a maximal vertex-
weighted clique in a graph can be converted to a linear programming formulation as follows [12]:

max:
∑
v∈V

w(v)xv,

subject to: xu + xv ≤ 1,∀(u, v) /∈ E,(3)

xv ∈ {0, 1},∀v ∈ V.

Using an ILP solver on this formulation results in an exact algorithm to the MDC-T problem.
As discussed in Section 2, the size of CG(G ) is often much smaller than that of CG(X ), which results

in a drastic improvement in the size of the ILP formulation, and, in turn, the actual computing time when
solving the problem. We showed in [12] how to improve the ILP formulation when CG(G ), rather than
CG(X ), is used, given that CG(G ) is very sparse in practice. Notice that, in theory, the exact algorithm
to the MDC-T problem is guaranteed only if CG(X ) is used. In practice, CG(G ) may be sufficient, as we
show below.

4.2. A Dynamic Programming Algorithm. Dynamic programming (DP) is a divide-and-conquer algo-
rithmic technique that breaks a problem into sub-problems, solves the sub-problems, and then uses those
solutions in an efficient way to form the solution to the main problem. For a problem to be amenable to a
DP solution, it has to exhibit certain properties. For more details, the reader is referred to any standard
textbook on algorithms; e.g., [1]. We now describe how to solve the MDC-T problem using a DP algorithm.

Let t be a rooted binary tree, with L(t) = A ⊆ X . Given a collection G of gene trees, we denote by
`(t,G ) the sum of

∑
g∈G β(B, g) for all clusters B in t, including A. Further, we denote by `∗(A,G ) the

minimum value of `(t,G ) over all possible binary trees t on A. If t1 and t2 are the two subtrees whose roots
are the children of t, then clearly we have

`(t,G ) = `(t1,G ) + `(t2,G ) +
∑
g∈G

β(A, g).

The quantity
∑
g∈G β(A, g) is fixed for each A, and therefore, if t is an optimal tree on A such that `(t,G ) is

minimum, then `(t1,G ) and `(t2,G ) must also be minimum. This allows us to compute `∗(A,G ) recursively
as follows.

(1) Let C be a collection of all non-empty subsets of X . We partition C into subsets C1, . . . ,C|X|,
where Ci, 1 ≤ i ≤ |X |, is the collection of all clusters of size i in C .

(2) For every A ∈ C1, `∗(A,G ) = 0, and for A ∈ C2, `∗(A,G ) =
∑
g∈G β(A, g).

(3) For A ∈ Ci, 3 ≤ i ≤ |X |,

`∗(A,G ) = min {`∗(A1,G ) + `∗(A2,G ) : A1 ∩A2 = ∅ and A = A1 ∪A2}+
∑
g∈G

β(A, g).

(4) Return `∗(X ,G ).

Although the algorithm described above only returns the number of extra lineages, we can easily modify
it so that we can actually reconstruct the optimal species tree. For each i, 3 ≤ i ≤ |X |, in Step 3, we also
record two pointers to optimal subclusters A1 and A2. By backtracking those pointers starting with cluster
X , we can obtain the optimal set of compatible clusters.

The running time of the algorithm is bounded by
∑|X |
i=0

(|X |
i

)
2i = 3|X |. Although this is exponential, it

is significantly better than a brute-force approach that examines all (2|X | − 3)!! binary rooted phylogenetic
trees on X . However, it is important to note that this bound drops significantly when only the clusters of
the input gene trees are considered; i.e., when the nodes of the compatibility graph CG(G ) are considered.
Further, we expect that as the problem size increases, in terms of the numbers of taxa, loci, and alleles, the
ILP algorithm may have an advantage over the DP algorithm, owing to the power of the commercial (and
some non-commercial) ILP solvers.
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5. Handling Special Cases

Thus far, we have discussed the MDC criterion and presented algorithms for the MDC-T problem only
for the case when the trees in G are all binary, and have exactly a single individual (or, allele) per locus per
species. We now discuss how the criterion, and algorithms, extend to the cases where multiple individuals
per species may be sampled, and when the trees are not necessarily binary.

5.1. Multiple Individuals Per Species. Suppose that we sample more than one individual per species
when reconstructing a gene tree. We can extend the MDC criterion as follows. All taxa in the gene trees are
considered distinct, even if they are from the same species. When fitting the gene tree into the species tree,
we simply draw as many lineages originated backwards from a species as the number of individuals sampled
for that species, and the remaining process is carried out in a similar manner as in [5]. For instance, consider
the species tree and gene tree in Figure 3. There are three species A, B and C, and for species A, we sample
two individuals, represented as A1 and A2 in the gene tree. Because we sample two individuals for A, there
are two lineages within the branch incident with the leaf A. As we trace the evolution backwards in time, we
find that A1 coalesces first with C, then with A2, and finally with B. All of those coalescence events occur
on the branch incident into the root of the species tree. For this example, there is one extra lineage on the
branch incident with the leaf A, and two extra lineages on the branch (u, v), accounting for a total of three
extra lineages.

In [12], we showed how to count the number of extra lineages for each cluster. The counting method
applies to the case of multiple individuals in a straightforward manner, with the convention that individuals
of the same species are mapped to the same species. For the trees in Figure 3, the number of extra lineages
for cluster A is 2− 1 = 1 because there are two subtrees of the gene tree, (A1) and (A2), such that their leaf
sets are subsets of {A} (note here that both A1 and A2 are mapped onto A). Similarly, the number of extra
lineages for cluster AB is 3− 1 = 2.

A B C A1 A2C B

A1

A2

v

u

Figure 3. MDC for gene trees with multiple alleles/individuals. On the left, the species tree
is shown in tubes, while the thin lines show how the gene tree, on the right, is fitted within the
branches of the species tree. On the right, a gene tree with four leaves, two of which correspond to
two individuals of species A.

5.2. Non-binary Trees. The extension of the MDC criterion for non-binary trees is quite straightforward.
A non-binary node (a node with out-degree higher than 2) in the gene tree indicates that the lineages in the
subtree rooted at that node all coalesce together. Fitting a gene tree into a species tree can be carried out
in exactly the same way as in [5]. Figure 4 provides an illustration. Here, lineages from A, B, and D fail
to coalesce along the branch (u, v), resulting in 3− 1 = 2 extra lineages on that branch. We note here that
a non-binary node in the species tree does not affect the way we count the number of extra lineages on the
branch incident into it. In this example, we have a node with out-degree 3 in the species tree corresponding
to the cluster {A,B,D}. In the gene tree, we have exactly three subtrees (A), (B) and (D) such that their
leaf sets are subsets of {A,B,D}.
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A B C DA B CD

v

u

Figure 4. MDC for non-binary trees. On the left, the species tree is shown in tubes, while the
thin lines show how the non-binary gene tree, on the right, is fitted within the branches of the
species tree.

6. Performance of MDC

We have implemented our methods in the PhyloNet software package [14] and analyzed two biological
data sets [4,10] and a large set of simulated data sets. Analyses showed very good performance on all these
data sets, as we reported in [12]. However, all these analyses involved a single individual per species. In
this section, we study the performance of MDC on simulated data sets, when multiple alleles per species are
sampled. To generate the data sets, we used the Mesquite tool [7] and the same procedure and parameters
that Maddison and Knowles used in [6].

Species trees were simulated by using the “Uniform Speciation” (Yule) module in Mesquite. Two sets
species trees were generated: one for those with a total branch length of 100,000 generations, and one for
1,000,000 generations. Each data set has 500 species trees. Within the branches of each species tree, the
script generated 1, 3, 9, or 27 gene trees using the module “Coalescence Contained within Current Tree”
with the effective population size Ne equal 100,000. For each gene tree, 1, 3, 9, or 27 alleles (individuals)
were sampled per species.

Since the species tree is known for simulated data, we studied the performance of MDC by comparing the
inferred species tree against the true species tree. For this comparison, we used the normalized Robinson-
Foulds (RF) measure [9], which quantifies the average proportion of branches present in one, but not both,
of the trees. A value 0 of the RF distance indicates the two trees are identical, and a value of 1 indicates
the two trees and completely different (they disagree on every branch).

We inferred the species trees using the exact algorithms to the MDC-T problem, that we described above,
while using all clusters of taxa, to guarantee optimality (we will show below the results when only clusters
exhibited by the input gene trees were used). Since the study includes eight taxa, there were 28 − 1 = 255
clusters, which were used as the basis for inference of the species trees.

Figure 5 shows the normalized RF distance between the inferred species tree and the true one. Clearly,
for a given number of loci and alleles, the performance of MDC is better for the case of deep divergence
(total branch length of 10Ne than the case of recent divergence (total branch length of 1Ne). However, the
difference in performance shrinks as the number of individuals sampled increases. For example, when only
a single individual is sampled per species and a single locus is used, MDC has an error rate of about 19%
in the case of deep divergence, whereas it has an error rate of about 70% in the case of recent divergence.
However, this gap closes as the number of individuals and number of loci increase.

In general, we observe the MDC’s performance improves as the number of loci and individuals increases,
regardless of the level of divergence. However, in the case of recent divergence, we observe that increasing
the number of individuals yields a higher gain in performance than an increase in the number of loci (see
also [6]). Further, under this divergence, the gain from increasing the number of loci becomes much smaller
as the number of individuals sampled is larger. For example, for the case of 27 individuals, there is hardly
any gain from increasing the number of loci from 9 to 27. Nonetheless, it is expected, based on mathematical
properties of gene genealogies under the coalescent model (e.g., see [16]) that an increase in the number of
individuals beyond a certain number ` would seize to have an effect on the accuracy of the inferred species
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Figure 5. Accuracy of the inferred species tree as measured by the Robinson-Foulds distance
when all clusters (there are 28 − 1 = 255 of them) are used. (a)Recent divergence (total branch
length is 1Ne); (b) Deep divergence (total branch length is 10Ne). We note that the y-axes in (a)
and (b) are on different scales to make the difference between the curves more visible.

tree. For example, observe in Figure 5(b) that increasing the number of individuals beyond three does not
have much of an impact on the accuracy of the species tree estimate. We expect that the value of ` would
be smaller for larger total branch lengths. However, a thorough study of this observation is imperative, and
is beyond the scope of this chapter.

It is important to note that when a single gene tree is used as the input to MDC, the method returns a
species tree that is identical to the gene tree, since that is the tree with the minimum (zero, in this case)
number of extra lineages. We observe that the performance, in the case of a single locus and single individual,
is much better in the deep divergence case—this is simply because the gene tree in this case has a smaller
degree of incongruence with the species tree. However, even in the case of recent divergence, using only one
locus but with increasing the number of alleles from 1 to 27, results in a drastic improvement in performance.
Last but not least, Figure 5 indicates statistical consistency of MDC under the simulation conditions.

The amount of incongruence in a data set may be reflected in the optimal number of extra lineages
required to reconciled all the gene trees within the branches of a species tree, over all possible species tree.
Figure 6 shows the average number of extra lineages required to reconcile all gene trees in the input within
the branches of the optimal (under MDC) tree. Clearly, the average number of extra lineages is much smaller
in the case of deep divergence—we would expect much less incongruence in this case than in the case of
recent divergence. Further, we observe that for small numbers of individuals, the increase in the number
of extra lineages is much slower than for the case of large numbers of individuals. This indicates that a
large extent of the incongruence is caused by the multiplicity of individuals, rather than from the size of
the set G of gene trees. This has a practical implication on the running time of inference methods: when
analyzing genome-scale data sets, the number of loci, particularly for small numbers of individuals, may not
be the crucial factor affecting the performance (in terms of time and memory requirements) of the inference
method.

Finally, it is important to note that our method took about a second to infer the optimal tree on the
largest data set (27 loci and 27 individuals), and shorter than that for the smaller data sets. Our method
took seconds on the 106-locus yeast data set of [10] as well as the 268-locus Apicomplexan data set of [4].
Further, in the simulation study we conducted in [12], our method took seconds on data sets including 2000
loci.
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Figure 6. Average numbers of extra lineages required to reconcile the inferred species tree and
gene trees when all clusters (there are 28 − 1 = 255 of them) are used for the inference. (a) Recent
divergence (total branch length is 1Ne); (b) Deep divergence (total branch length is 10Ne). We
note that the y-axes in (a) and (b) are on different scales to make the difference between the curves
more visible.

7. Inference From the Clusters of the Gene Trees

As the algorithms presented above require consideration of all clusters (subsets) of taxa in set X to
guarantee optimality of the solution, the actual running time of the methods increases exponentially with
the number of taxa. While these algorithms take seconds on data sets with 10 taxa, for example, this time
would increase significantly when analyzing 20 taxa, and it becomes prohibitive for larger data sets.

A central question that we considered in [12] and revisit here is: do we need to consider all subsets of X or
is it sufficient to consider only the subsets of X that appear as clusters in the gene trees in input set G . The
motivation behind considering this question is two-fold. First, given that, under the coalescent model, the
gene tree is a random variable conditional on the species tree, gene trees are expected to contain the signal
for the phylogenetic relationship of the species. Notice that, under certain conditions, this premise may not
hold; e.g., [2]. We begin by showing that, in theory, using only the gene tree clusters is not sufficient. For
example, consider the three gene trees in Figure 1. For these three trees, and using their compatibility graph
CG(G ), shown in Figure 1(d), the optimal tree is one whose topology is identical to the tree in Figure 1(a).
Such a species tree estimate requires seven extra lineages when reconciling all three gene trees within its
branches. However, the tree in Figure 7 requires only six extra lineages to reconcile those three trees. We

a e dcb

1
2
3

Figure 7. A tree that requires six extra lineages to reconcile the three gene trees in Figure 1.
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Figure 8. Average rates of species tree clusters that do not appear in any gene trees. (a) for
data with recent divergence (total branch length is 1Ne); (b) for data with deep divergence (total
branch length is 10Ne). We note that the y-axes in (a) and (b) are on different scales to make the
difference between the curves more visible.

note that it induces cluster {a, b, c, e} that does not appear as a node in CG(G ). This illustrates that, in
general, to obtain an optimal solution to the MDC-T problem, it may not be sufficient to consider only
CG(G ). It is trivial to state that an optimal solution is guaranteed when using CG(X ), since this graph
contains all possible binary trees as maximal cliques. However, despite these boundary cases, we observe
that considering only the set of clusters in G may be sufficient in practice.

Figure 8 plots the average number of branches (or, clusters) that would be missing from the true species
tree if only CG(G ) is considered. Clearly, the number of missing branches decreases as the numbers of
loci/individuals increase, and no branches are missing when 9 loci are used and at least 3 individuals are
sampled. When a single individual is sampled, using all 27 loci guarantees that almost all branches of the
species tree would be recoverable from CG(G ).

Figure 9 shows the normalized RF distance between the inferred tree and the true species tree, when
only CG(G ) is considered. When comparing the results in this figure with those in Figure 5, we observe
almost no loss in performance of MDC by restricting the set of clusters to those in CG(G ). It is important
to note that while all branches of the true species tree are present in CG(G ) for the case of 27 loci and 27
individuals, the MDC criterion may still not identify the true species tree, since the true species tree may
not necessarily be the one that minimizes the amount of deep coalescences. This indicates the number of
extra lineages required by the true species tree is larger than the optimal one—a phenomenon encountered
by all parsimony-based criteria.

Further, the average number of extra lineages required to reconcile all gene trees within the branches of
the optimal species tree estimate was not affected when using only CG(G ), as is evident from comparing the
results in Figure 10 to those in Figure 6.

It is worth mentioning as well that the accuracy of our inference of the species tree of the yeast data
set [10] and Apicomplexan data set [4] was not affected by considering only CG(G ).

The second motivation behind considering only the clusters of the gene trees is computation. The number
of clusters of the gene trees tends to be much smaller than the number of all subsets of X , as illustrated
in Section 2. This has a significant impact on the actual running time of the method. Figure 11 shows the
average number of clusters induced by the gene trees in each of the simulated data sets. It clearly shows that,
while the number of clusters induced by the gene trees increases with the number of loci (and slightly with
the number of individuals), this number is still much smaller than the total number of all possible clusters,
which is 28 − 10 = 246 (we exclude the clusters including zero, one, or all eight taxa).
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Figure 9. Accuracy of the inferred species tree as measured by the Robinson-Foulds distance
when only clusters induced by gene trees are used. (a) for data with recent divergence (total
branch length is 1Ne); (b) for data with deep divergence (total branch length is 10Ne). We note
that the y-axes in (a) and (b) are on different scales to make the difference between the curves more

visible.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

Number of loci in each species

A
ve

ra
ge

to
ta

l
#

ex
tr

a
li

n
ea

ge
s

 

 
1 Ind.
3 Ind.
9 Ind.
27 Ind.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

Number of loci in each species

A
ve

ra
ge

to
ta

l
#

ex
tr

a
li

n
ea

ge
s

 

 
1 Ind.
3 Ind.
9 Ind.
27 Ind.

(a) (b)

Figure 10. Average numbers of extra lineages required to reconcile the inferred species tree
and gene trees when only clusters induced by genes trees are used for the inference. (a) for data
with recent divergence (total branch length is 1Ne); (b) for data with deep divergence (total branch
length is 10Ne). We note that the y-axes in (a) and (b) are on different scales to make the difference
between the curves more visible.

In summary, while some boundary cases may result in sub-optimality of the tree inferred by MDC when
considering only the clusters induced by the input gene trees, empirical results indicate that this may not
necessarily be the case in general. Further, as the gap between the number of vertices in CG(G ) and the
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Figure 11. Average numbers of clusters induced by gene trees, excluding single-element and all-
element clusters. (a) Recent divergence (total branch length is 1Ne); (b) Deep divergence (total
branch length is 10Ne). We note that the y-axes in (a) and (b) are on different scales to make the
difference between the curves more visible.

number of vertices in CG(X ) is very large in practice, it is unclear whether there exists a set C ⊂ 2X 5 such
that (1) C is much smaller than 2X and (2) an optimal solution to the MDC-T problem is guaranteed to
be found by considering CG(C). We identify this as a direction for future research.

8. Using PhyloNet

We have implemented the algorithms presented in this chapter in the PhyloNet software package [14].
In this section, we show how to use PhyloNet to (1) count the number of valid coalescent histories, given
a species tree and a gene tree, and (2) infer the species tree from multiple gene trees. Once PhyloNet is
downloaded from the website (http://bioinfo.cs.rice.edu/phylonet), a directory with the file named
phylonet.jar will be available; this file is the executable program for running all features in PhyloNet.

8.1. Using PhyloNet to Count Valid Coalescent Histories. PhyloNet implements our algorithm [13]
for counting the number of valid coalescent histories; the tool is called countcoal. To use this tool, the user
invokes the tool on the command line as:

java -jar phylonet.jar countcoal -f input

Here, input is the name of the file that contains a species tree on the first line and a gene tree on the second
line. For example, suppose we have the following file, named input-fig2, for the trees in Figure 2:

S = ((A, B), ((C, D), E));
G = ((A, B), ((C, E), D));

Then, invoking the command:

52A denotes the power set of A; that is, the set of all subsets of A.
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java -jar phylonet.jar countcoal -f input-fig2

returns 6, which is the number of valid coalescent histories for reconciling the gene tree in Figure 2(b) within
the branches of the species tree in Figure 2(a).

8.2. Using PhyloNet to Infer Species Trees Under MDC. There are two tools for inferring the
species tree using the MDC criterion: coal infer st, which is an implementation of the ILP algorithm, and
dpcoal infer st, which is an implementation of the DP algorithm. To use the first tool, the user invokes
PhyloNet as follows:

java -jar phylonet.jar coal infer st cplexpath gt

In this case, cplexpath is the path to CPLEX (the ILP solver) on the user’s computer, and gt is the name
of the file that contains all input gene trees (each gene tree written in the Newick format on a separate line).
For the second tool, the user invokes PhyloNet as follows:

java -jar phylonet.jar dpcoal infer st gt

In this case, only file gt, which contains all gene trees, needs to be specified.
As an example, suppose we have a file named input-fig1 that contains the gene trees in Figure 1:

T1 = ((((a, b), c), d), e);
T2 = ((a, b), (d, (c, e)));
T3 = ((a, c), (d, (b, e)));

Then, to infer the species tree under MDC, from these gene trees, by using the DP algorithm, the user can
type the command:

java -jar phylonet.jar dpcoal infer st input-fig1

which returns ((((a, b), c), d), e) as the species tree.
In the case where multiple individuals per species may be sampled, the user needs to supply a mapping

between gene tree taxa and species tree taxa in a separate file. If a total of k individuals are sampled from
all species, then this mapping file contains k lines, each line containing two entries:

ind sp

where ind is the label of an individual and sp is the label of the species to which ind belongs. For example,
suppose we have a file gt that contains two gene trees:

T1 = ((a1, a2), ((b1, c1), (b2, c2)));
T2 = (((a1, b1), (c1, b2)), (a2, c2));

where a1, a2 are two sampled individuals of species a; b1, b2 are two sampled individuals of species b; and
c1, c2 are two sampled individuals of species c. Then, in order to reconstruct the species tree for the three
species a, b, an c, using the DP algorithm for solving MDC, the user invokes the command:

java -jar phylonet.jar dpcoal infer st gt -m map

where file map contains the following lines
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a1 a
a2 a
b1 b
b2 b
c1 c
c2 c

For this example, the inferred species tree estimate is (a, (c, b)).
Finally, it is worth mentioning that PhyloNet has several other features; the user may consult the tool’s

user manual (available in the download), as well as [14].

9. Conclusions

In this chapter, we reviewed the minimize deep coalescences, or MDC, criterion for inferring species trees,
which was first proposed by Maddison [5]. Further, we reviewed two exact algorithms that we [12] developed
recently for inferring the optimal species tree under the MDC criterion, and demonstrated their accuracy on
additional simulated data sets. Finally, we discussed the issue of solving the MDC problem by considering
only the clusters induced by the input gene trees. This last point can have implications on the actual running
time of the methods, as well as on developing efficient species tree inference methods under other criteria,
such as maximum likelihood.
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