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1 ML on Networks is NP-hard

Problem 1. 3-Satisfiability (3SAT) [1]
Input: A formula F over a set U of variables, collection C of clauses over U
such that each clause c ∈ C has |c| = 3.
Question: Is there a truth assignment for U that simultaneously satisfies all
clauses in C?

Given such a formula F we construct a network N(F ) as follows. In the sequel,
we use x is connected to y to indicate that x is a child of y.

1. A root R with a 1-leaf child.
2. For every variable we crate a node connected to a diamond loop as depicted

in Fig. 1.

1 1
x

1

0

0

0

0 0

to R

Fig. 1. For every variable we create a diamond gadget.

3. For every clause ci = (i ∨ j ∨ k) we generate a 1-leaf, called clause leaf, and
connect it by a tree edge to variable node i and by a reticulation edge to
an intermediate node c′i. Intermediate node c′i is connected by a tree edge
to variable node j and by a reticulation edge to an intermediate node c′′i .
Finally, intermediate node c′′i is connected by a tree edge to variable node k
(see Fig. 2). The length of a (tree) edge emanating from a variable node is
1 if the literal is negated and 0 otherwise.

4. Finally, we create a complementing 1-leaf child connected by a 0 long edge
to every internal node with out-degree 1.
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Fig. 2. A clause gadget for the clause (x̄ ∨ y ∨ z). (complementing 1-leaves removed).
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Fig. 3. The reduction from 3-SAT to the tiny best ancestral likelihood. Each variable
has a node to which all literals of that variable are connected. In the figure we see the
sub network representing the formula (x̄ ∨ y ∨ z) ∧ (x ∨ ȳ ∨ w̄).

A complete network representing the formula (x̄ ∨ y ∨ z) ∧ (x ∨ ȳ ∨ w̄) (without
the complementing 1-leaves) is shown in Fig. 3.

Observation 1 The network N(F ) is a valid phylogenetic network.

Proof. We observe the following:

– There is a single internal node with in-degree 0.
– Every internal node has in-degree > 1.
– Every node with in-degree > 1 has exactly one entering tree edge and the

rest are 0-length reticulation edges.
– The temporal constraint property holds.

Let S denote the leaf assignment under the reduction. Then we get the fol-
lowing claim:

Claim. F has a satisfying assignment if and only if there is a tree T ∈ T(N)
and internal assignment a ∈ {0, 1}r s.t. L(S|T,a, p) > 0.
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Proof. We begin with some auxiliary observations.

Observation 2 For any tree T in the network and internal assignment a, L(S|T,a, p) >
0 if and only if the root R and all non variable nodes (nodes which are not as-
signed to variables) must have internal assignment 1.

We first show that if F has a satisfying assignment, then there is a tree
T ∈ T(N) and internal assignment a ∈ {0, 1}r s.t. L(S|T, p) > 0. For every
variable we assign its value from the satisfying assignment. For every clause ci,
we choose the path from the 1-leaf representing ci to the literal satisfying it. Note
that if that literal is negated, then the edge emanating from it has substitution
probability 1. Now, every variable is connected to the root by either the 0 − 0
path in the diamond if the variable is assigned 1 or the 1 − 0 path otherwise.
Finally, if we set the probability of every reticulation edge to be positive, we get
the desired result.
To prove the other direction, assume there exists a tree T ∈ T(N) and internal
assignment a ∈ {0, 1}r s.t. L(S|T, p) > 0. Then by Observation 2, all non-
variable internal nodes are forced to the value 1.

Observation 3 For every variable v in T , all emanating edges from v in T have
the same probability which is either 0 if v has assignment 1 or 1 otherwise.

Since every leaf must be connected to the root we get that every clause is
satisfied.

We comment that in the final tree, few internal nodes may remain with out-
degree 0 and hence disappear in the resulting tree. In addition, other internal
nodes can remain with out-degree 1 and contracted with the resulting obvious
probability on the new edge.

Theorem 4. The tiny best tree ancestral sequences of phylogenetic networks is
NP-hard.

Proof. It is easy to see that the problem is in NP, since given a tree T it is easy
to check if T ∈ T(N) and subsequently calculate its likelihood. Additionally, the
reduction of Claim 1 is performed in time polynomial in the size of F .

Corollary 1. The tiny best tree average likelihood of phylogenetic networks is
NP-hard.

Proof. Using the same reduction as in Claim 1, and Observation 2, we see that
for a tree to obtain likelihood greater than zero, all internal nodes are forced
to 1. Therefore, the only freedom is in the variable nodes and by Observation 3
each such assignment defines a truth assignment to the variables in F .

By using similar arguments to Corollary 1 we also obtain the two following
hardness results:

Corollary 2. The tiny all trees ancestral likelihood and the tiny all trees average
likelihood of phylogenetic networks are NP-hard.
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All the above results set the complexity of the tiny versions of the network
likelihood problems. The next reduction deals with the “small” problem where
the network is given but we seek to find the tree and the edge probabilities that
maximize the likelihood over the whole trees of the network. For the reduction
we use the same construct we used in [2]. We also restrict the edge probabilities
to some interval [0, p] for p < 1.

We prove the hardness of the small best tree ancestral ML problem by a
reduction from the Maximum 2-Satisfiability (max-2-sat) problem [1], which is
formally defined as follows.

Problem 2. Maximum 2-Satisfiability (max-2-sat)
Input: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 2, and a positive integer K ≤ |C|.
Question: Is there a truth assignment for U that simultaneously satisfies at
least K of the clauses in C?

We start with a lemma which will be used in our main proof. Let a “True-True”
denote a clause that has no negated literals, “True-False” denote a clause that
has exactly one negated literal, and “False-False” denote a clause in which both
literals are negated. For the “True-True” clause we generate the subnetwork
shown in Fig. 4 on the right, For the “True-False” clause we generate the sub-
network shown in Fig. 4 on the left and for the “False-False” we generate the
same network as for “True-True” but flip the value of the leaves.
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y yx x

X ∨ Y X̄ ∨ Y

Fig. 4. Part of the reduction from max-2-sat to small best tree ancestral likelihood.

Lemma 1. [2]
(1) The minimal number of substitutions is 3 for a “True-True” network is
obtained by labelling x = 1, y = 1, or both. Otherwise,it is 4.
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(2) The minimal number of substitutions is 3 for a “True-False” network is
obtained by labelling x = 0, y = 1, or both. Otherwise, it is 4.
(3) The minimal number of substitutions is 3 for a “False-False” network is
obtained by labelling x = 0, y = 0, or both. Otherwise, it is 4.

Given a formula F as input to max-2-sat, we create a node for every variable
and connect every variables to two ancestral nodes and these two to the root.
In addition, for every clause ci we generate the appropriate subnetwork as in
Fig. 4 and connect it to the variables involved. Fig. 5 shows a complete network
generated for a specific clause.

1000 11111 11 1 10 0000 11 1 10 0000
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x ∨ z̄w ∨ ȳx ∨ w

Fig. 5. The complete network generated for the clauses (x ∨ w), (w ∨ ȳ), (x ∨ z̄).

Since this version of problem deals with the ancestral version where every
internal node is assigned a value of either 0 or 1, we get the following observation:

Observation 5 At any optimal tree, the probability of every edge will be set to
either zero or p.

Observation 6 Unless all variables have the same value (0 or 1) there is exactly
one substitution on the subnetwork above the variable nodes.
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Therefore, WLOG, we will assume the optimal assignment has both values.

Claim. Given a set of clauses C over variables X, as input to max-2-Sat, X has
an assignment which k clauses are satisfied, if and only if the network constructed
has a tree with likelihood p4|C|−k+1.

Proof. ⇒ By Lemma 1 there are 4|C|− k substitutions at the networks below
the variable nodes and by Observation 6 exactly one more above the variable
nodes. Now, by Observation 5 the edges on which a substitution occurs get
probability p and the others 0. This yields the desired result.
The proof of the other direction proceeds similarly.

Theorem 7. The small best ancestral tree is NP-hard.
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