October 11, 2005 8:47 RuthsNakhlehRecombination

RECOMP: A PARSIMONY-BASED METHOD FOR DETECTING
RECOMBINATION

DEREK RUTHS  LUAY NAKHLEH

Department of Computer Science, Rice University, Houstexas 77005, USA.
{drut hs, nakhl eh}@s. rice. edu

The central role phylogeny plays in biology and its pervaisass in comparative genomics studies
have led researchers to develop a plethora of methods facdtsrate reconstruction. Most phylogeny
reconstruction methods, though, assume a single tree lyimdea given sequence alignment. While
a good first approximation in many cases, a tree may not alwadel the evolutionary history of
a set of organisms. When events such as interspecific repatias occur, different regions in the
alignment may have different underlying trees. Accurat®mstruction of the evolutionary history
of a set of sequences requires recombination detectiolowiedl by separate analyses of the non-
recombining regions. Besides aiding accurate phylogersetalyses, detecting recombination helps
in understanding one of the main mechanisms of bacteriadmgendiversification. In this paper, we
introduce RECOMP, an accurate and fast method for deteciogmbination events in a sequence
alignment. The method slides a fixed-width window acrossalighment and determines the pres-
ence of recombination events based on a combination ofdggand parsimony score differences in
neighboring windows. On several synthetic and biologieaheets, our method performs much faster
than existing tools with accuracy comparable to the beskzdla method.

1. Introduction

Phylogeny, i.e., the evolutionary history of a set of orgars, plays a major role in repre-
senting and understanding relationships among the omganibhe rapidly-growing host of
applications of comparative genomics has moved phylogethetforefront, rendering it an
indispensable tool for analyzing and understanding theettre and function of genomes
and genomic regions. Further, understanding evolutioclaaynge and its mechanisms also
bears direct impact on unraveling the genome structure addratanding phenotypic vari-
ations. One such mechanism of evolutionary changetéspecific recombinatichthe
exchange of genetic material among different organisnssagpecies boundaries.
Accurate detection of recombination is important for astdavo major reasons. Stud-
ies have shown that the presence of recombination evenigelgasive effects on the quality
of the reconstructed phylogenetic tfe& Therefore, accurate reconstruction of the evolu-
tionary history of a set of sequences that contains recoatibim events necessitates first
detection of recombination events and then individual ysed of the non-recombined re-
gions. Further, recombination plays a significant role intbdaal genome diversification.
Whereas eukaryotes evolve mainly though lineal descentrartdtions, bacteria obtain a
large proportion of their genetic diversity through the aisgion of sequences from dis-
tantly related organisms, via horizontal gene transfer TH& recombinatior. Further,
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recombination is one of the processes by which bacteridaevesistance to antibiotics’

In light of their effects on the accuracy of phylogenetic hoets and their significance
as a central evolutionary mechanism, developing accurathads for detecting recombi-
nation is imperative. Many methods have been proposed fptioblem (for example,
Posada studied the performance of 14 different recombinatétection methods Re-
combination detection methods fall into various categgraepending on the strategies
they employ:® Among those categories, phylogeny-based detection metredcurrently
the most commonly used. Recombination events result in different phylogenetiedre
underlying different regions of the sequence alignmerd,itis this observation that forms
the basis for phylogeny-based recombination detectiohoakst The most recent methods
include PLATO (Partial Likelihood Assessed through Tredi@jzation)? DSS (Differ-
ence of Sum of Square$}nd PDM (Probabilistic Divergence Measute) Central to all
these methods is the idea of sliding a window along the al@mtrof sequences, fitting data
in each window to a phylogeny, and comparing phylogeniegighboring windows.

Ruths and Nakhleh addressed the limitations of these metlaod introduced prelim-
inary measures for recombination detectidnn this paper, we extend our previous work
by considering both the topologies of trees and their parsyrscores across adjacent
windows of the alignment. We introduce a new phylogeny-ddsemework, RECOMP
(RECOMbination detection usingdPsimony), that uses parsimony-based tree reconstruc-
tion and evaluation, coupled with measurement of topohlgiifferences. We have im-
plemented and studied the performance of four differentsmess (within the RECOMP
framework) on synthetic as well as biological datasets. @sults show that RECOMP’s
accuracy is comparable to the most accurate existing metlaod is much faster.

The rest of the paper is organized as follows. In Section 2neflp describe interspe-
cific recombination and review the most recent phylogersedanethods for its detection.
In Section 3, we describe our new method, RECOMP. We desotibexperimental set-
tings and results in Section 4, and conclude in Section 5 fivitd remarks and directions
for future research.

2. Phylogeny-based Recombination Detection

Interspecific (or inter-species) recombination is a predsswhich genetic material is ex-
changed between different species lineages. When intgfispecombination events oc-
cur, different regions in the sequence alignment may haffereit underlying trees, as
illustrated in Figures 1 and 2. The sequence alignment thgpin Figure 1 has three non-
recombining regions |, I, and 1, defined by a recombinat&vent that involves the ex-
change of region Il sequences between organiBrasdD. The phylogenetic tree shown in
Figure 2(a) models the evolutionary history of regions | #hdf the alignment, whereas
the phylogenetic tree in Figure 2(b) models the evolutigrtastory of region Il of the
alignment.

The scenario depicted in these two figures illustrates #nambination events may
result in different phylogenetic trees underlying differeegions; this phenomenon is the
basis for phylogeny-based recombination detection methblaree of the most recent and



October 11, 2005 8:47 RuthsNakhlehRecombination

o o w >

Figure 1. An alignment of four sequences whose evolutioéstory contains a recombination event that in-
volves the exchange of sequences in region Il between agai? and D.

(a) (b)

Figure 2. (a) The phylogenetic tree underlying regions | kihdff the alignment in Figure 1. (b) The phyloge-
netic tree underlying region Il of the alignment in Figure 1.

accurate phylogeny-based recombination detection msthed®LATO (Partial Likelihood
Assessed through Tree OptimizationSS (Difference of Sum of Squaresand PDM
(Probabilistic Divergence Measuré}.Central to all these methods is the idea of sliding a
window along the alignment of sequences, fitting data in @dnbdow to a phylogeny, and
comparing phylogenies in neighboring windows.

PLATO computes the likelihood of various regions of the same alignment from a
single reference tree. The idea is that recombination nsgiaill have a low likelihood
score. The main problem with this approach is that the raferéree may be inaccurate
since it is estimated from the whole sequence alignment.

DSS improves upon PLATO by sliding a window along the alignineomputing a
tree on the first half of the window, and estimating the fit & siecond half of the window
to that tree (using a distance-based measure). The maiteprokbith this approach is
that it uses distance-based methods; such methods areliatgcespecially given short
sequences (which is the case when using DSS).

PDM addresses the shortcomings of DSS by (1) consideringetinbod approach
for fitting the data to a tree, (2) using a distribution overes, rather than a single tree
(to capture the uncertainty of tree estimation from shogusaces), and (3) comparing
trees based on changes to their topologies. Later, HusmedEWright further improved
the performance of PDM by incorporating sophisticated tlastering techniquesSince



October 11, 2005 8:47 RuthsNakhlehRecombination

PDM uses a probabilistic approach, it is very slow in practieurther, since the tree space
has very high dimensionality, clustering trees may be Enoiaitic.

3. RECOMP

Our proposed method is similar to PDM in principle, yet mugher and faster, and
comparable in accuracy. We slide a window of widthalong the alignment, obtaining a
set7; of trees onS;, the set of sequences in & window, using a maximum parsimony
heuristic (heuristic search with branch swapping, as imgleted in PAUP'?), and com-
paring the setg; andZ;; oftrees. The MP heuristic we use returns a set of trees dsbyte
their parsimony scores: some trees may have an identicsihpamy score. We denote the
set ofall j*" (j = 1,2,...) best parsimony trees (with respect to their scores, somasti
called thej'" leve) by LV L7, and the set of trees in the tagdevels byOPT (k) (k > 1),
formally the setulggkLVLz. In the experimental study of our method, we considered
T, = OPT(k), and studied the performance of the method as a functioredf tlalue (we
usedk = 1,2, 3,4).

Let 7T be a set of trees. We define thenterof the set¢(7), to be the strict consensus
of all trees in the set, and thadius, r(7) = max{RF(c¢(7T),T) : T € T}, where
RF denotes the Robinson-Foulds distance between a pair f'tréeurther, we define
Apmin(T,T) = min{RF(T,T") : T' € T} andd,o»(T,T) = max{RF(T,T") : T' €
T}. We write P(S,T) to denote the parsimony score of trf€deaf-labeled by sef of
sequences, ani(S,7T) to denoteminycr P(S,T). We investigated four functions for
comparing the sequences in two adjacent winddwandW, 4 :

e Intersection(W;,W; 1) =
H{T:TeTit and‘RF(C‘T ,c(T3)<r(T;)}| + {T:TeT; and RF(‘T cl( Tit1))<r( 7+1)}\
1+1 1

ZTET' dmin(T=7;+l) ZTETH»] m1n(T;'T11)

o AvgMin(W; Wiy1) = A + [Tia]
T oy dmas (T, T,
o AVGMax(IW;, W 1) = YreT, d]nj;T(T,TH) ETETHW}THI‘ (T,73)

o ParsDiff(W;,Wit1) = |P(Sit1, Tiv1) — P(Si, Tig1)].

Further, we normalized the values computed by each of theffmetions as follows.
Let m andn be the minimum and maximum values, respectively, obtairyed function
across all windows for a given sequence alignment. We nazmahch value: computed
by the function on the alignment by

xr—m

n—m’
Therefore, the four functions return values in the rafigé]. The rationale behind the
functions is as follows. Given an alignment of sequencesh eflengthl, leti be a site
falling at a recombination breakpoint. Further, assumettiawindow we consider is of

aThe strict consensus of a set of trees is the maximally reddhee (i.e., the tree that has a maximum number of
edges) in which every edge is also an edge of every tree irethe s
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width w. Then, the tred” on which sitegi — w) ... (i — 1) is different from tre€l” on
which sitesi .. .i + (w — 1) evolved. Due to the inaccuracy of phylogeny reconstruction
methods, and the potential errors in evolutionary assumptmadeI” and7’ may be
unattainable; hence the need for considering sets of traether than a single tree. When
sets7Z; and7;,, correspond to sequence regions that fall on different siflasecombina-
tion breakpoint, we expect the trees to differ between tregets, which implies a lower
I nter section value, and higheAvgMin, AvgM ax, andPar Diff values. When the two sets
of tree correspond to sequence regions that fall on the safeeof any recombination
event, we expect a highénter section value, and loweAvgMin, AvgM ax, andPar Diff
values. For consistency purposes, we always repertl, wherel is the value computed
by the comparison function.

The outline of the RECOMP method is as follows:
RECOMP(S,w,t)

fori=0toLl —w
Xi = f(Wi, Wit1);
1 =1+t

Plot X.

The sequence alignment is denotedfyhe window size by, and the step size iy The
parametet. denotes the length of the sequencesif can be any of the aforementioned
four functions, and¥V; denotes the sequence alignment in windowhe output of RE-
COMP is a graphical representation of the output of the fonst Choosing a threshold
that distinguishes the recombination sites can be detewdrdy inspecting the graphical
output of RECOMP (as is the case with all phylogeny-basedhatst that have graphical
output). Further, such a threshold can be automaticallypeted by a careful training of
the method on datasets with characteristics similar toettodshe dataset under investiga-
tion.

4. Empirical Performance
4.1. Data

To test our method, we applied it to the three synthetic arellbalogical datasets used
in another papet.For the three synthetic datas&®1, SD2, andSD3, the evolution of
three DNA sequence alignments, each of 5500 nucleotidessivaulated down trees with
8 leaves. Each of the two datasét®1 and .S D2 contains two recombination events: an
ancient event affecting the region between sites 1000 add, Hxd a recent event affecting
the region between sites 2500 and 3000. Further, they bathicca mutational hot spot be-
tween sites 4000 and 4500 (sites were evolved at an increaséebtide substitution rate)
to test whether the detection method can successfullyndisish between recombination
and rate variation. The average branch lengths of the pbyletic trees underlying datasets
SD1 andSD2 are 0.1 and 0.01, respectively. The third synthetic dat&se8, contains
two recombination events: an ancient event affecting tiggorebetween sites 1000 and
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2000, and a recent recombination event between sites 3@D8G0. The branch lengths
of the phylogenetic tree underlying datasdd3 were drawn from a uniform distribution
on the interva[0.003, 0.005].

The biological datasef/ D, consists of 10 Hepatitis B Virus sequences each of 3049
nucleotides, with evidence for recombination events (theaskt contained two recombi-
nant strains and eight nonrecombinant strains). For mdeglslen the datasets, the reader
is referred to the original papér.

4.2. Results

We ran RECOMP with all four functions on the four datasets.céesidered four different
values ofk (1,2,3, and 4) for set® PT'(k) of trees, two window sizes 300 and 500, and step
size 100. We describe our results of the four functions odathsets when usir@PT'(3)

for window size 500, which produced the best results amdrpaameter settings. These
results are shown in Figures 3—b5 for the three syntheticsgétdaand in Figure 6 for the
biological dataset.

In the case of the&s D1 dataset, our method detected the four recombination break-
points (at sites 1000, 1500, 2500, and 3000) based on alFfogtions (Figure 3). There
are clear threshold values that could be used as cutoff ¥éleveen recombination/non-
recombination regions: 0.8 for thater section function, 0.4 for theAvgMin andAvgM ax
functions, and 0.1 for thBar sDiff function. Clearly, the signal for a recombination break-
point at sites 2500 and 3000 is stronger than that at site3 408 1500. The reason for this
is that the recombination event involving the region betwsites 2500 and 3000 occurred
between more distantly related taxa, which results in latggological differences and
parsimony score differences among trees across recontratakpoints. Observe that
the Par sDiff function is very robust, in this case, to the mutational pots: it correctly
predicts no recombination in the mutational hotspot redietween sites 4000 and 4500.
Thelntersection function has the strongest signal of recombination at ait fecombina-
tion breakpoints (sites 1000, 1500, 2500, and 3000); hokyélve function is sensitive to
mutational hotspots, and exhibits large fluctuations.

Similar behavior was obtained by the four functions on th@sketS D2 (Figure 4).
However, in the case of this dataset, #hegMin and AvgM ax functions showed a weak
signal for the ancient recombination event between sit@9 30d 1500. Thénter section
andPar sDiff function still showed clear signal for recombination atfallir breakpoints.
Once again, th@ar sDiff outperformed all other three functions in robustness végpect
to mutational hotspots. Th&€D2 dataset was evolved with a lower rate of evolution than
that of SD1 and hence was harder to analyze (which is the case for the existing
method$).

The S D3 dataset was evolved down the tree with the lowest rate otideolamong all
three synthetic datasets, and hence was the hardest foetheds to analyze (which is the
case for the other existing methdjisAs with the other two datasets, detecting the recent
recombination event is easier, which is shown in the peréorre of all four functions in
Figure 5. In particular, all four functions had a weak sigoialecombination at site 2000.



October 11, 2005 8:47 RuthsNakhlehRecombination

7
1 P99 1
0.8 0.8
(]
(%)
§
0.6/ % 0.6f
n ©
- £
0.4 E o4t
j=2}
>
<<
0.2 0.2F
OO 1000 2000 3000 4000 5000 G0 1000 2000 3000 4000 5000
Site Site
(a) Intersection (b) AvgMin
1 1

o
©
o
©

o
o
o
o

N
N

Avg. max. distance
o
S

o
)

Parsimony Score Difference
o
N

OO

0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Site Site

(c) AvgM ax (d) Par sDiff

Figure 3. Results of the four functions &tD1.

Yet again, most of the sites in this alignment were synonysnathich made it hard for all
methods to detect recombination.

On the Hepatitis B dataset, both the DSS and PDM methodstddtttree breakpoints
around sites 600, 1700, and 2200. Our method shows peakssat three points, based
upon the four functions we used (Figure 6). Neverthelegs| ntersection and Par sDiff
functions gave the clearest signal among the two.

The performance of PLATO, DSS, and PDM on the same datasgtevgled by Hus-
meier and Wright. The performance of our method is comparable to that of PDMghvh
performed best among those three methods. Further, sincmeiihod uses a fast MP
heuristic, calculates parsimony scores (which is compeialpolynomial time), and com-
putes simple functions, it is much faster (orders of magigjuhan PDM, which uses
compute-intensive Bayesian analysis techniques.
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Figure 4. Results of the four functions &tD2.

5. Conclusions and Future Work

In this paper, we introduced a simple, effective and fassipasny-based method for de-
tecting recombination. In experimental studies involvmgth synthetic and biological
datasets, our method produced very good results—comgai@biose of the best known
methods (and ran orders of magnitude much faster). Ourduwtark includes exploring

ways to improve the performance of our method in the presehoeutational hot spots.

Further, we are interested in devising methods for detgdtie locations of the recom-
bination events on the organismal tree. An open-sourcadsibone implementation of
RECOMP is currently available for download and use. It islengented in the Sequoia
software suite as both a command-line tool as well as a Janaayiwhich allows its incor-

poration into larger programs.
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