
Generating executable models from signaling network connectivity and semi-quantitative
proteomic measurements

Derek Ruths∗

School of Computer Science, McGill University, Quebec, Montreal Canada
∗Email: derek.ruths@cs.mcgill.ca

Luay Nakhleh

Department of Computer Science, Rice University, Houston, Texas USA
Email: nakhleh@cs.rice.edu

Executable biology is a discipline that is concerned with turning the specifications of a biological system into a computational model
that can be simulated under different conditions to produce predictions about the behavior of the system. In this paper, we propose
a computational framework consisting of a generalized execution strategy for signaling networks as well as a method for learning
executable models from connectivity-maps and proteomic data pertaining to a specific signaling network. We call these data sources
semi-quantitative because often they characterize the behavior of the system without providing reliably exact numerical measurements.
To the best of our knowledge this is the first use of semi-quantitative data for building predictive models of biochemical systems.

Using our framework, we generate an executable model of a network of signaling pathways downstream of the epidermal growth
factor receptor (EGFR) in the MCF-7 cell line. Using this executable model, we determine that our method performs as well as existing
methods while using orders of magnitude less training data to achieve a comparable degree of accuracy.

1. Introduction

Within the domain of executable biology, an area of on-
going research and innovation concerns how to build ex-
ecutable models from biological data1. In this paper, we
present a new modeling framework that uses connectivity
maps and proteomic measurements to build executable
models of signaling networks. We collectively call these
data sources semi-quantitative because such data sets are
often generated to the level of resolution that can identify
trends, but not exact numerical quantities within the bio-
logical system (though it is important to note that, when
desired, biologists can generate more precise measure-
ments, though the effort can be significant and costly).

Our execution strategy features a simplified discrete-
time representation of signal propagation in which each
protein has a degradation rate parameter and each inter-
action has a weight parameter that abstractly models both
strength and speed. The model for a specific signaling
system is derived from an input connectivity map of pro-
tein interactions in the system. The model’s parameter
values are determined by solving an optimization prob-
lem in which values are indirectly constrained by semi-
quantitative measurements taken from a set of perturba-
tion experiments. This approach has several benefits.

Models for cell-specific signaling networks. Our
method’s use of perturbation experiments to learn pa-
rameter values makes it possible for biologists to build
cell-specific executable models by providing perturbation
experiments that characterize the behavior of a specific
cell-line.

Large-scale model building and analysis. Because
the discrete-time relationships can be derived directly
from network connectivity and the non-linear optimiza-
tion problem from raw experimental measurements, our
framework can be automated (and, in fact, was automated
when conducting all analyses discussed in this paper),
making it well-suited to constructing executable models
for preliminary and large-scale data sets. Since current
high-throughput technologies can generate both—high-
throughput microarrays often are used as a first-pass to
identify potentially interesting features of a cell’s signal-
ing or gene regulatory network—our method provides
researchers with the ability to analyze and use such vast
amounts of data that are becoming available to them.

Modeling other cellular processes. Because the parame-
ter learning process is independent of the specific execu-
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tion strategy we developed to capture signaling dynamics,
it is possible to extend our framework to other biological
processes beyond cellular signaling such as gene regula-
tion and metabolism. Such an extension would involve
developing a discrete-time representation of the cellular
process and formalizing how experimental measurements
of that system would correspond to entities within that
representation.

We validate our method by building a predictive
model of a network of signaling pathways downstream of
EGFR in the MCF-7 cell-line using previously published
experimental results2. The trained model correctly pre-
dicts the effect of a perturbation on a protein’s activity-
level 90% (63 out of 70) of the time. This high success-
rate is particularly favorable when compared with the
method in Ref. 2 which trained on 20 perturbation ex-
periments from the same data set (as opposed to the 3

used by our method) in order to achieve the same level
of accuracy. Note that training a model to have 100%

accurate predictions is often complicated by the fact that
a priori knowledge used to bootstrap the model may it-
self be incorrect or incomplete. This is the case with the
EGFR network we consider in this paper: the 10 incon-
sistencies between the experiments and our model’s pre-
dictions suggest that the dynamics of several components
of the Ras pathway may be influenced by factors besides
those present in the model.

Additionally, in a closer investigation of the model
constructed by our method, we find that paths with the
strongest weights correspond to interactions with known
significance in the MCF-7 cell-line. This suggests that
executable models constructed by our method can be not
only predictive, but also descriptive of the underlying sig-
naling mechanisms which can be useful to biologists in
better understanding the structural and dynamic proper-
ties of a signaling network that determine aspects of its
behavior.

2. Materials and Methods

2.1. A simplified model of signaling
network dynamics

Dynamic models of biochemical systems fall into two
classes: continuous-time and discrete-time. Continuous-
time schemes typically model the behavior of the sys-
tem as a first-order differential equation dY

dt = f(Y (t)),

where Y (t) is a vector containing the values of the state
variables at time t. The trajectory that the system state
vector follows at time t is determined by some function
of the current state, f(Y (t)).

Discrete-time models, in contrast, explicitly break
time into a series of steps in which the behavior of the
system is expressed as the inductive formula:

Yt+1 = f(Yt) (1)

where f(x) is the transition function that evaluates to the
next state visited after x. Often such discrete-time mod-
els are linear in the system state variables, in which case
the state transition formula can be rewritten Yt+1 = AYt,
where A is the transition matrix. In models of metabolic
networks, A corresponds to the stoichiometric matrix.
This correlation does not extend to signaling systems,
however, since the underlying biochemical reactions are
rarely explicitly modeled. Regardless of the interpreta-
tion of A, a given state variable yit+1 is determined by

yit+1 =
∑

1≤j≤|Y |
ai,jy

j
t

where ai,j is the element of A at row i, column j. Thus,
the system’s next state depends entirely upon the current
state and the elements ofA. These ai,j are the parameters
of the system. Once the values of these have been deter-
mined and a starting condition, Y0 has been specified, the
model is complete.

Though continuous-time models seem to express the
biochemical processes more accurately (the underlying
system is spatially and temporally continuous in nature),
discrete-time models enjoy a number of practical advan-
tages over continuous-models that can make them the
better suited for certain types of problems: (1) though
the underlying biochemical systems may be continuous,
time-series data is inherently discrete, representing one or
more time points at which the state of the system was ob-
served; (2) the inductive structure of Equation 1 makes it
easy to derive the state space of the system; and (3) Equa-
tion 1 allows the explicit derivation of the finite sequence
of states visited given a starting state and a number of
time steps.

The third property is of particular interest to us here
as we use the finiteness property of this sequence to ef-
ficiently find parameter values for a model that satisfy
certain semi-quantitative properties. In order to take ad-
vantage of this finite state sequence property, we build a
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discrete-time model of a signaling network with the form:

yit+1 = max(δiy
i
t +

∑

j∈Ai

wj,iy
j
t −

∑

j∈Hi

wj,iy
j
t , 0). (2)

State variable i corresponds to the activity-level of a sig-
naling protein, δi is the degradation rate of that protein,
Ai are other proteins in the system that activate i, and Hi

are other proteins in the system that inhibit i. Since Ai

and Hi specify the proteins that interact directly with i,
the Ai’s and Hi’s for all i’s in the system constitute the
connectivity of the system—the directed interactions that
connect the proteins in the system together. The param-
eter wj,i denotes the strength of the effect that j has on i
through the interaction that connects them. When the pa-
rameters δi and wi,j are specified and a starting point is
selected, the resulting system can be simulated by itera-
tively evaluating the state equations for increasing values
of time, t. Models similar to this have been used to cap-
ture transcriptional dynamics (e.g., Refs 3, 4).

Note that the model shown in Equation 2 is effec-
tively a system of linear discrete mathematical formulae
with discontinuities at zero. Within this project, we con-
sider it an executable model for two reasons. First, and
most fundamentally, we use the state equations to exe-
cute the model precisely as expressed using a computer
(making this model one that is ‘executed’). This is dif-
ferent from other mathematical models, such as ODEs,
which are simulated, meaning that their behavior is ap-
proximated by computational evaluation. Second, as will
be discussed in later sections, we select parameters values
for the model by treating it as a computational model.

2.2. Semi-quantitative data from
perturbation experiments

To determine values for δi and wi,j , we require semi-
quantitative data from perturbation experiments. A per-
turbation experiment activates or inhibits the function of
one or more proteins (called targets) through the use of
various mechanisms such as drugs, gene knockouts, or
siRNA. These perturbations have varying effects on the
response of other proteins and cell phenotypes to sig-
naling events. For a given signaling protein, the per-
turbation’s effect is measured by comparing the activity-
level of that protein in an unperturbed cell to the activity-
level of the same protein under the perturbed condition.
Ordinarily the cell is stimulated prior to measuring the
activity-levels in order to determine how the perturbed

protein(s) influence the signal that reaches other proteins.
Given the unperturbed and perturbed activity-levels

for proteinsX , Y , and Z (Xu andXp, Yu and Yp, Zu and
Zp, respectively), we can make semi-quantitative asser-
tions about the effect of the perturbation on the activity-
level of each protein: Xu < Xp if X increased in re-
sponse to the perturbation, Yu > Yp if Y decreased, and
Zu = Zp if Z exhibited no change.

It is possible to make many other kinds of semi-
quantitative assertions about the experimental results. For
example, the biologist may observe that the perturbed
concentration of Z is greater than that of Y : Zp > Yp; or
that the unperturbed value of Z appears to be two times
that of X: Zu = 2Xu. In fact, any observations taking
such forms can be used to constrain the parameter val-
ues of the model. However, using such constraints must
be done with great care since comparison across protein
types and conditions may not be meaningful due to differ-
ing concentrations and measurement accuracy for various
protein types.

However, for the remainder of this paper, we con-
sider (without loss of generality) the three fundamental
assertions: Yu < Yp, Yu > Yp, and Yu = Yp as the
types of semi-quantitative data that constrain the training
process.

2.3. Training a model using
semi-quantitative data

Given the connectivity for a signaling network of
interest—the sets Ai and Hi for all proteins i in the
system—we designed a training method that takes a set
of semi-quantitative data from perturbation experiments
and infers values for the parameters δi and wi,j that make
the resulting model reproduce the maximum number of
semi-quantitative behaviors specified possible (when the
appropriate perturbed conditions are simulated).

Our method works by converting the model and the
semi-quantitative data into a series of constraints for a
non-linear optimization problem. The optimization algo-
rithm is directed to find values for all δi andwi,j such that
the model’s behavior satisfies as many semi-quantitative
data constraints as possible.

2.3.1. Modeling perturbation experiments

Note that a perturbation experiment can be characterized
as the set of inhibited proteins, P ⊆ P. The perturbed sig-
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naling network is structurally the same as the unperturbed
network except where the perturbation has its effect. As
a result, the state equations of the perturbed network, SP ,
are largely the same as those in the unperturbed network,
S0:

SP [i] :=

{
S0[i] if i 6∈ P

yit+1 = 0 if i ∈ P

where SX [i] is the state equation for protein i under con-
dition X (the set of inhibited proteins).

Given the state equations for a perturbation experi-
ment, SP , and the unperturbed signaling network, S0, we
can compute the semi-quantitative change in protein i’s
activity-level due to the perturbation by simulating both
networks from some initial state Y0. The predicted semi-
quantitative change in protein i is:

q̂Pi =





< if ∆P
i < −ε

> if ∆P
i > ε

= if − ε ≤ ∆P
i ≤ ε

where ∆P
i =

∑
0≤t≤T (S0[i, t] − SP [i, t]) is the differ-

ence in the activity-level of protein i over the time of the
simulation between the unperturbed (S0) and perturbed
(SP ) conditions (SX [i, t] denotes the value of the state
equation for protein i at time t under condition X). The
ε parameter is incorporated into the definition in order to
desensitize the measure to extremely small, probably in-
significant, changes (e.g., ∆P

i = 10−12 most likely does
not indicate a change of any significance).

2.3.2. Training a model using
semi-quantitative data from
perturbation experiments

To train a model, S0, a set of perturbation ex-
periments, P = {P1, P2, ..., Pn} and semi-
quantitative perturbation experiment observation, Q =

{(x1, p1, q1), (x2, p2, q2), ..., (xR, pR, qR)}, are pro-
vided. A semi-quantitative perturbation experiment ob-
servation, (x, p, q) ∈ Q specifies the response of protein
p to perturbation Px: q ∈ {<,>,=} indicates the way
that the activity-level of protein p changed in response to
perturbation Px with respect to the unperturbed system
S0.

The objective of the training procedure is to select an
initial condition, Y0, degradation rates, δi, and interaction
weights, wi,j , such that when the original and perturbed
systems are simulated (S0 and SP1 , SP2 , ..., SPn , respec-
tively), q̂Px

p = q is true for as many semi-quantitative
results, (x, p, q) ∈ Q, as possible.

As with most training procedures, ours is a search for
parameter values that cause the model to which they be-
long to behave in a certain way. We formalize the param-
eter search as a non-linear optimization problem in which
the parameters are free variables constrained by (1) the
state equations in S0 and SP , (2) the semi-quantitative
behavioral assertions, Q, and (3) a set of logical con-
straints: 0 ≤ δi ≤ 1 (the activity-level of a protein can
never fall below zero), and wi,j ≥ 0 (the effect of a pro-
tein can not be negative)a.

In order to build the non-linear optimization prob-
lem, a simulation time, T , must be specified. Optionally,
a set of weights for individual constraints can be specified
Ω = {ω1, ..., ω|Q|}. Conceptually, these weights can be
used to make the optimizer favor satisfying certain con-
straints over others. If Ω is not specified, all constraints
are assumed to be equally important (i.e. ωi = 1 for all
1 ≤ i ≤ |Q|)b. The problem is then constructed as fol-
lows:

• Free variables

– S0[i, t] - the activity-levels for each pro-
tein, 1 ≤ i ≤ N , for each time step,
t ∈ {0, 1, ..., T}, in the original network

– SPk [i, t] - these are the activity-levels for
each protein, 1 ≤ i ≤ N , for each time
step, t ∈ {0, 1, ..., T}, in the network cor-
responding to the perturbation experiment,
Pk

– 0 ≤ δi ≤ 1 - the degradation rate of each
protein

– wi,j ≥ 0 for all interactions - the interac-
tion weight of each edge in the network

– X[r] ∈ {0, 1} for all semi-quantitative
data constraints 1 ≤ r ≤ R.

• Constraints

– State equations for the unperturbed and

aIt is worth noting that, because this non-linearity takes such a regular form, we suspect that there may be more optimal search strategies than a
general non-linear optimization algorithm. We identify this as a topic for future work.
bWe have not used these weights in our formulation (i.e., ωi = 1 for all ωi). These weights are included in this formulation since they may be useful
for researchers using the method on data for which some observations are more certain or important than others.
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Fig. 1. (a) A detailed diagram of the EGFR signaling network. (b) The EGFR signaling network largely restricted to the proteins
inhibited or measured in the experiments reported in Nelander et al..

perturbed networks: S0 and SPi for Pi ∈
P

– Semi-quantitative changes due to perturba-
tions as characterized in Q:

∗ The following rule is produced for all
rules (xr, pr,‘<’): (proteins that in-
creased in response to the perturba-
tion)

X[r]
T∑

t=0

(S0[pr, t]− SPxr [pr, t]) < X[r](−εr)

∗ The following rule is produced for all
rules (xr, pr,‘>’): (proteins that de-
creased in response to the perturba-
tion)

X[r]
T∑

t=0

(S0[pr, t]− SPxr [pr, t]) > X[r]εr

∗ The following rule is produced for all
rules (xr, pr,‘=’): (proteins that did
not change in response to the pertur-
bation)

X[r]

∣∣∣∣∣
T∑

t=0

(S0[pr, t]− SPxr [pr, t])

∣∣∣∣∣ ≤ X[r]εr

• Objective function: maximize
∑R

r=1 ωrX[r]

The choice to use εr rather than a strict inequality
was based on the need to ensure that the optimization al-
gorithm did not satisfy the condition using a trivial dif-
ference (e.g., 10−20) and the desire to incorporate sup-
port for changing the difference thresholds that signaled
a semi-quantitative change (recall the use of a similar ε
parameter earlier in the definition of ∆i). At present, the
value of ε is manually selected by the biologist in order to
influence what changes are considered significant. Better
characterizing choices of ε and the effects these have on
the outcome of the training procedure are important di-
rections for future work.

When all constraint weights are equal (e.g., ωr = 1

for all r), then the objective function forces the optimiza-
tion algorithm to find parameter values that satisfy the
maximum number of semi-quantitative constraints. Giv-
ing the optimization algorithm the flexibility to ignore
specific constraints is important since certain network
structures might make satisfying some semi-quantitative
constraints impossible. In these cases, rather than failing
outright, the optimization algorithm simply satisfies all
other semi-quantitative constraints.

The constraint weights, Ω = {ω1, ..., ω|Q|}, are used
to bias the optimizer towards satisfying certain perturba-
tion constraints over others. This is useful when some
experimental results have higher confidence than others.
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In such cases, the more highly supported experimental
result constraints can be given larger weights in order to
cause the optimizer to favor satisfying them over other
results in which the researcher has less confidence.

The resulting non-linear optimization problem gen-
erated as described can be solved by a variety of off-the-
shelf optimization algorithms. All results generated in
this paper were produced using the BONMIN software
package5.

A web-based interface for this method is available at
http://www.ruthsresearch.org/monarch.

3. Results and Discussion

We evaluated our method’s performance on a series of
perturbation experiments conducted on the MCF-7 cell-
line and published in Ref. 2. In these experiments, a se-
ries of proteins were targeted: EGFR (ZD1839), mTOR
(rapamycin), MEK (PD0325901), PKC-δ (rottlerin), PI3-
kinase (LY294002), and IGF1R (A12 anti-IGF1R in-
hibitory antibody). In total, 21 different perturbation
experiments were conducted. In each, one or two of
these molecules were inhibited, after which EGF stim-
ulation was applied. Phospho-levels for several proteins
were measured at the end of each experiment: p-AKT-
S473, p-ERK-T202/Y204, p-MEK-S217/S221, p-eIF4E-
S209, p-c-RAF-S289/S296/S301, p-P70S6K-S371, and
pS6-S235/S236. The effect of these perturbations on
two phenotypic processes, cell cycle arrest and apopto-
sis, were also measured.

For our analysis, we considered a subset of
molecules involved in signaling directly downstream of
EGFR; this network (hereafter, the EGFR network) is
shown in Figure 1(a). Because several of its members
have known oncogenic properties, this network is of sig-
nificant interest to the biomedical research community.
Based on this subset, we considered all protein targets
except IGF1R and PKC-δ—both of which are not rec-
ognized members of EGFR signaling6, 7. This provided
a set of 10 perturbation experiments (out of the 21 in
Ref. 2). We included phospho-levels for all proteins mea-
sured. Since our current methods are focused on signal-
ing processes, we did not consider the two phenotypic
processes since these are the result of a combination of
signaling, transcriptional, and metabolic processes.

The network in Figure 1(a) was reduced in order to
minimize the number of proteins and interactions in the
model for which measurement information was not avail-
able. The motivation for this is to limit the number of
parameters whose values are unconstrained by observa-
tions, which otherwise makes the parameter space much
larger. Clearly, however, it is desirable to support such
unmeasured proteins in a predictive model. We identify
the problem of extending our methods to handle such un-
constrained signaling members as a direction for future
work.

The connectivity for the network induced by the
measured molecules is shown in Figure 1(b). This re-
duced form of the EGFR network was obtained by keep-
ing only proteins that either (1) were targets, (2) were
measured, or (3) were required to maintain connectivity
among targets and measured proteins in a non-trivial way.
GSK3b was retained in order to ensure that TSC2 had
at least one activating input. The molecules AA mTOR
and AA GSK3b were added in order to model signifi-
cant sources of activity that reside outside of the EGFR
network (GSK3b activity is largely determined by envi-
ronmental factors and mTOR is activated by Rheb which
maintains a high basal activity-level).

To test the predictive ability of our method, we per-
formed a cross-validation procedure in which the model
parameters were trained using semi-quantitative data
from three experiments. The resulting model was then
used to simulate the remaining seven perturbation condi-
tions.c The predicted activity-levels from these simula-
tions were interpreted as semi-quantitative observations
(e.g., the perturbation caused an increase/decrease/no-
change in p-AKT). These predicted observations were
then compared to the true semi-quantitative changes in
the data. The correctness of the trained model was taken
to be the percent of predictions that agreed with the semi-
quantitative experimental results.

cThis training-to-testing proportion was selected in order to emphasize the smaller data-requirements of our method, which will be discussed in the
following section.
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Fig. 2. The agreement of one of the best trained model’s pre-
dictions with perturbation experiments reported in Nelander et
al. Columns are the individual experiments, rows correspond to
molecules. The columns set apart to the far right constitute the
three experiments used to train the model. In the perturbation
experiments matrix, a bold “x” indicates inhibited molecules. In
the prediction agreement matrix, a “X” square indicates that our
method’s prediction for that molecule in that condition agreed
with the experimental measurement. Our method correctly pre-
dicted 90% (63 out of 70) of the test experiment measurements.

Each different triplet of perturbation experiments
yielded a different parameterized model (the full set of
training triplets and their predictive accuracy is provided
in the Supporting Information). Most triplet training sets
yielded models with > 70% accuracy. The best trained
models obtained had 90%, 63 out of 70, predictive ac-
curacy (70 data points = [7 observations per experiment]
× [10 different experimental conditions]). One of these
models was selected for further analysis and is shown in
Figure 2. As a point of comparison, the predictive model
reported in Ref. 2 was trained and tested on this same
data set. Though they trained their method on 20 of the
21 experiments, their method’s ability to recall the cor-
rect semi-quantitative change for a given molecule in a
specific perturbation experiment was also 90% (63 out
of 70). Thus, despite using much less and only semi-
quantitative interpretations of the experimental data, our
method was able to predict the behavior of individual

molecules with a comparable degree of accuracy.
The 10 disagreements between our method’s pre-

dictions and the experimental data may be due to cell-
specific signaling properties, some of which are sug-
gested in Ref. 2. It is worth noting that the majority of
errors occur along the c-Raf pathway (i.e., c-Raf, MEK,
and eIF4E). Far from being a random distribution of dis-
crepancies throughout the network, the concentration of
inconsistencies in this pathway suggests that this part of
the model is incomplete. Several discrepancies arise for
c-Raf under three different perturbations. c-Raf is known
to be activated by Ras and by various isoforms of PKC,
none of which is PKC-δ6, 7. Nonetheless, Nelander et al.
detect a significant interaction between PKC-δ and c-Raf
suggesting that, in the MCF-7 cell-line, this isoform may
have some interaction with c-Raf. The absence of such
a signaling mechanism in our model could well account
for the inconsistencies concerning c-Raf.

The discrepancies in the dynamics of eIF4E under
the MEK/mTOR perturbation may be related to the com-
plicated mechanisms actually governing eIF4E. Experi-
mental results report eIF4E increasing in response to this
perturbation. Regardless of parameter values, the con-
nectivity of our model cannot explain this since MAPK
and mTOR are the only activators of eIF4E activity. This
suggests that the increase in eIF4E activity in response to
this perturbation is either the result of an entirely different
mechanism or experimental error.

Both our method and the method in Ref. 2 generated
discrepancies when predicting the response of AKT to
the EGFR/mTOR perturbation. Under the perturbation,
AKT is reported to have shown no change (0.0 fold in-
crease). While it is certainly possible for AKT to have not
changed, it is also possible that the change (up or down)
was sufficiently small as to not register as a change during
analysis: note that in Ref. 2, the AKT blots are quite dark
and cover much of the channel, factors that make dis-
cerning small fold changes more difficult. It is also pos-
sible that AKT signaling occurs differently in the MCF-7
cell-line due to a known mutation in PIK3CA (the cat-
alytic subunit of PI3K) which causes MCF-7 cells to have
higher basal levels of AKT phosphorylation than normal
cells7.

Like AKT, the MEK activity inconsistencies un-
der the EGFR/MEK perturbation may be the result of
the existence of some mechanism not present in our
model. Typically, MEK is activated through the pathway
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EGFR ; c-Raf ; MEK. However, MEK is observed
to increase while c-Raf activity drops, which cannot be
explained by interactions in the model. Thus, other cell-
specific signaling pathways may dominate MEK’s activ-
ity under this perturbation. Close inspection of the west-
ern blots for c-Raf in Ref. 2 also raise the possibility that
the reported changes are simply artifacts of the western
blots themselves.
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Fig. 3. The EGFR signaling network model with relative inter-
action weights depicted by the width of arrows.

3.1. Interpretation of Interaction
Weights

In addition to predictive capabilities, our method pro-
duces a model whose parameters have been derived from
experimental data. There are several aspects of the inter-
action weights (shown in Figure 3) inferred for the EGFR
network in the MCF-7 cell-line that offer insights into
cell-specific signaling properties. The four heaviest path-
ways in the network are:

• EGFR→ c-Raf→ MEK→ MAPK,
• EGFR→ PI3K→ AKT,
• EGFR→ PI3K→ p70S6K→ pS6, and
• AA GSK3b→ GSK3b→ TSC2 a mTOR.

Notice that the first three constitute the three ways in
which EGF signal enters the network through the recep-
tor. The interaction weights suggest a relative ordering in
the strength of these different signaling paths (listed by
signaling endpoint): pS6 < AKT < MAPK.
Cell-specific behavior of AKT. Our model suggests that
the EGFR ; AKT pathway is much less significant than
the c-Raf pathway. This is a surprising result when

the general significance of the PI3K pathway is con-
sidered. Our method appears to have identified a cell-
specific attribute, since MCF-7 has a PI3K mutation that
induces the constitutive overexpression of AKT8. Ad-
ditional evidence in support of this hypothesis is that,
in our model, AKT was given a degradation rate slower
than the network average degradation rate (approximately
one standard deviation higher than the network-wide av-
erage degradation rate of 0.47, see Supporting Informa-
tion) which will cause AKT to maintain its activity-level
for longer than other members of the network.

Also notice that the relative strengths of EGFR ;

MAPK and EGFR; AKT → mTOR suggest a rel-
ative ordering of the negative feedback loops that regu-
late EGFR. Because the MAPK a EGFR interaction
receives stronger signal than the p70S6K a EGFR in-
teraction, it is likely the case that in the MCF-7 cell-line,
MAPK is the stronger negative regulator of EGFR. This
coincides with the results in Ref. 2 in which they found
significant evidence of negative regulation of EGFR by
MAPK, but no indication for that of p70S6K.
Tumor cell use of GSK3b. GSK3b participates in regu-
lating a number of important cellular processes including
cell cycle and energy metabolism9. A mounting body
of experimental evidence also suggests that it may be a
mechanism by which cancer cells satisfy their significant
energy demands. The strong activation of GSK3b (and
the very strong inhibition of mTOR) in our model may be
an indication that MCF-7, a breast cancer cell-line, be-
longs to the class of tumor cells that up-regulates certain
cell processes partially through increased GSK3b activ-
ity.

The presence of these pathways in our model as
strong chains of interactions both provides additional ev-
idence for the predictive capabilities of our method and
demonstrates how the parameters of the models can be
used to gain insights into the system being studied. These
results also support the more general idea that semi-
quantitative data alone is sufficient to gain insights into
the relative importance and strength of interactions in a
signaling network.
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3.2. The Importance of Connectivity
and Parameters

PROCEDURE RANDOMIZE(V ,E)

(1) D[v] = degree(v,E) for all v ∈ V

(2) E′ = ∅
(3) For each e ∈ E

• u, v, t = e
• Choose x ∈ V s.t. D[x] > 0
• D[x] = D[x]− 1
• Choose y ∈ V s.t. D[y] > 0
• D[y] = D[y]− 1
• E′ = E′ ∪ {(x, y, t)}

(4) Return G′ = (V,E′)

Fig. 4. The algorithm used to randomize the connectivity of a
network G = (V,E).

Within the context of work such as Ref. 10 which made
predictions using only network connectivity (no param-
eters), an important question to answer is how much the
presence of well-trained parameters contribute to the ac-
curacy of this method. In order to understand the con-
tribution of parameters and connectivity in this regard,
we evaluated the accuracy achieved by a model (1) with
the correct connectivity, but random parameter values, (2)
random connectivity with trained parameter values, and
(3) random connectivity and random parameter values.
Correct connectivity corresponded to the connectivity in
Figure 1; random connectivity corresponds to a network
with all the nodes and edges in the correct network, con-
nected in a randomized pattern (with only node degree
preserved). The algorithm used to randomize a network’s
connectivity is shown in Figure 4. Trained parameters
refers to using the optimal training data set to select good
parameter values; random parameters refers to using pa-
rameter values selected within a range of 0 to 1 for reten-
tion parameters and 0 to 15 for interaction weights (note
that various ranges for parameter values were tested with
no change in the overall results we report next). For each
scenario considered, 1000 networks were constructed and
their accuracy tested against the 7 remaining data sets.
Table 1 shows the outcome of the results.

Table 1. The contribution that correct connec-
tivity and trained parameters make to overall
model accuracy for the EGFR network.

Connectivity Parameters Accuracy
Correct Trained 90% (63/70)
Correct Random 59.3% (approx. 40/70)
Random Trained 21.2% (approx. 15/70)
Random Random 0.4% (approx. 3/70)

The results of these experiments indicate that con-
nectivity is, by far, the most significant contributor to the
accuracy of the model’s predictions. Even when random
parameters are used, predictions are correct nearly 60%

of the time. Having trained parameters, however, does
have an impact on accuracy: evidenced by the fact that
trained parameters increase accuracy by another 25%.

What these results also show is that training param-
eters is not always susceptible to the issue of overfitting.
While there is always concern that a sufficiently compli-
cated system can always be parameterized to produce cer-
tain behavior, for the EGFR network considered here, the
degree of connective complexity could only be fit to 21%

(approximately 15 out of 70 data points) of the experi-
mental data through training of parameter values.

4. Conclusions

The abundance of semi-quantitative experimental data
(raw measurements that have been distilled into high-
level behavioral trends or classes) both online and in in-
dividual labs as well as databases of network topology
(e.g., KEGG11) makes such data an appealing source of
information from which to build predictive models of bio-
chemical networks. In this paper, we have presented
a novel computational method for building executable
models of signaling networks. Furthermore, we have
shown that the models produced from semi-quantitative
data have descriptive capabilities: the parameters derived
from semi-quantitative experimental data can provide in-
sights into the underlying signaling mechanisms. Using
our method, we have provided further evidence that net-
work connectivity (one kind of semi-quantitative data)
is a strong determinant of network dynamics. Taken as
a whole, the work presented in this paper suggests that
models built from such data can provide profitable pre-
dictions. As a result, this line of inquiry deserves further
exploration and development.
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