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Abstract. Mapping intra-cellular signaling networks is a critical step in develop-
ing an understanding of and treatments for many devastating diseases. The
predominant ways of discovering pathways in these networks are knockout and
pharmacological inhibition experiments. However, experimental evidence for new
pathways can be difficult to explain within existing maps of signaling networks.

In this paper, we present a novel computational method that integrates phar-
macological intervention experiments with protein interaction data in order to
predict new signaling pathways that explain unexpected experimental results.
Biologists can use these hypotheses to design experiments to further elucidate
underlying signaling mechanisms or to directly augment an existing signaling
network model.

When applied to experimental results from human breast cancer cells targeting
the epidermal growth factor receptor (EGFR) network, our method proposes sev-
eral new, biologically-viable pathways that explain the evidence for a new signal-
ing pathway. These results demonstrate that the method has potential for aiding
biologists in generating hypothetical pathways to explain experimental findings.

Our method is implemented as part of the PathwayOracle toolkit and is
available from the authors upon request.

1 Introduction

Altered cellular signaling networks can give rise to the oncogenic properties of can-
cer cells [8], increase a person’s susceptibility to heart disease [6], and are responsible
for many other devastating diseases [8,3]. As a result, major efforts are currently under-
way to establish high-resolution maps of signaling networks for various disease-causing
cells. These can be used to inform the development of diagnostic methods and pharma-
cological treatments.

In the laboratory, targeted manipulation experiments either using knockouts (i.e.,
siRNA or genetic knockout organisms) or pharmacological agents are a primary method
for uncovering new connectivity or parts of a signaling network. The goal of such exper-
iments is to generate results that cannot be explained using existing signaling pathway
maps or models. These results are important because they signal the discovery of new
pathways, but at the same time raise the very open-ended issue of identifying the cause
of the incongruous result.
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Fig. 1. The path from experiment to new biological insights. Informative knockout or inhibition
results are those that cannot be explained by the model. Once such a result has been obtained,
the biologist must consider the possible causes for the inconsistency. This paper handles the case
of an incomplete signaling model (in the grey box) by providing a computational method for
detecting absent pathways and predicting new ones.

As shown in Fig. 1, several explanations can account for unexpected results:

1. The model is missing signaling pathways. In this situation, the result is unexpected
because interaction paths exist in the biological signaling network that are not rep-
resented in the model. These missing paths are false negatives since the model
indicates that no such paths exist.

2. The model contains incorrect signaling interactions or pathways. Particularly when
dealing with diseased cells, signaling network models based on different cell lines
can be inaccurate: interactions in one cell line may not exist in the diseased network
under study. Thus, the model contains paths that are false positives—paths that do
not exist in the context of the cell being studied.

3. Biological factors have influenced the result. These can range from technical chal-
lenges such as experimental conditions to issues of great scientific importance such
as a lack of specificity in the drug being used to knockout or inhibit part of the
network.

Thus, when faced with an unexpected result from a knockout or inhibition experi-
ment, the biologist has a large space of potential causes that he or she must consider.
As a result, there is a significant need to develop tools that expedite the process of gen-
erating hypotheses to explain unexpected targeted manipulation experimental results.

In this paper, we present a novel computational method for identifying and handling
knockout or inhibition results that belong to the first class discussed above—those that
cannot be explained because the model is missing pathways. Our method (1) identifies re-
sults for which the model network is missing paths and (2) generates biologically-viable
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pathways that can explain the result. These generated pathways become hypotheses that
the biologist can then use as a basis for further experiments or as paths that are added
to the existing network model. Prior work in this area has focused on related problems
in the transcriptional network domain [20,21]. However, to our knowledge, this method
is the first to use knockout or inhibition experiments to guide the prediction of missing
pathways in the cellular signaling network.

In order to generate new pathways, our approach integrates knockout or inhibition
result data with protein interaction data—both sources of information about interactions
that occur in signaling networks.

In a knockout or inhibition experiment, one or more compounds in the signaling net-
work are rendered inactive through chemical or genetic means. In the resulting network,
any role that these compounds played are eliminated. The modified network is stimu-
lated and set into motion. At various time intervals, the concentration and activity of
various proteins within the modified network are compared to those in the original net-
work. A statistically significant change in the concentration or activity of a given protein
in the modified network indicates that this protein and the inhibition target must interact.
A reasonable representation of such a positive result is the knowledge that a protein X
interacts with another protein Y. Since this captures the interaction information supplied
by the experiment, this is the representation we use throughout this paper.

Protein interaction data, commonly stored in protein-protein interaction
databases, is another major source of interaction information. This data is primarily
generated by high-throughput experimental methods that identify protein pairs that are
likely to interact. Unlike the results of knockout or inhibition experiments, all inter-
actions returned by these high-throughput methods are putative. As a result, the false
positive rate in protein interaction databases has been shown to be high [15]. Vari-
ous methods, ranging from literature search to comparisons across organisms, have
been proposed for assessing the likelihood of an interaction being correct [9,4,2,18,16].
When a protein interaction database is coupled with an interaction confidence measure,
it becomes a useful source of information on interactions that occur within the cell.

Since signaling networks ultimately are massive webs of directed protein interac-
tions, one might expect that new signaling topology could be uncovered by dissecting
these protein interaction databases. Yeang et al. considered this question with respect
to transcriptional networks [20]. In a more recent study, Scott et al. [15] considered this
problem with respect to signaling networks and found that highly biologically-relevant
topologies could be extracted from these interaction networks. In their analysis, they
recovered the MAP kinase and ubiquitin-ligation signaling pathways from a computa-
tional search of the MIPS interaction database [12].

Our approach uses this idea of discovering topological structure within a protein in-
teraction dataset by considering it within the context of a single knockout or inhibition
experiment. The computational technique searches a protein interaction network for
biologically-viable pathways that account for the results of the experiment. We make
the assumption that interactions with a high likelihood of being correct are biologically-
viable. Extending this assumption to the pathway-level, we consider a pathway to be
biologically-viable if the product of the likelihoods of each interaction in the pathway
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is high. Therefore, our method searches a protein interaction network for the best sup-
ported interaction paths that connect X and Y.

In order to test our method, we experimentally and computationally determined the
effect of pharmacological inhibitors on changes in signaling network function in human
breast cancer cells. Two human breast cancer cell lines were treated with three different
pharmacological inhibitors targeting different signaling molecules. We found an unex-
pected inhibitory interaction between MEK1 and c-Src. Given this result, our method
generates excellent candidate pathways that explain the observed knockout or inhibition
pattern and are consistent with other biologically known properties of the EGFR net-
work. This result can be taken as evidence that our method’s generated pathways can be
considered reasonable hypotheses for the true signaling network topology underlying
experimental results.

In order to make our method available for use, we have implemented it as a Java tool
and bundled it with the PathwayOracle software package. PathwayOracle is available
upon request from the authors.

2 Results and Discussion

2.1 Experimental Results

In order to understand how targeted manipulations alter different nodes in the signaling
network we used inhibitors to specific molecules and measured changes in several pro-
teins within the network using protein microarrays. Combining targeted pharmacolog-
ical manipulations with protein array technology allows us to simultaneously measure
changes in a large number of signaling molecules very rapidly. Using this method we
treated breast cancer calls with three inhibitors of the signaling network.

The inhibitors used were Iressa (EGFR kinase inhibitor), perifosine (AKT inhibitor)
and PD98059 (MEK inhibitor). Iressa is currently used in clinical treatment of patients,
and AKT and MEK inhibitors are in pre-clinical and early phase clinical trials [7].

no EGF no EGF30 min after EGF 30 min after EGF

Fig. 2. Experimental microarray data from BT549 and MDA-MB-231 breast tumor cells treated
with the MEK1 inhibitor PD98059 shows that the level of phopho c-Src is increased in BT549
cells but not in MDA-231 cells upon EGF stimulation. The two graphs show the phospho c-Src
levels in the two cell lines after normalization for protein loading, the first bar corresponds to
control cells and the second bar corresponds to cells treated with the MEK1 inhibitor for 30
minutes.
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Analysis of the data from the two cell lines at two different time points in which
post stimulation revealed changes in signaling within the network (see Figure 2). We
observed the expected changes (not shown), i.e. when the MEK inhibitor was used EGF
did not stimulate MAPK1,2 but the activation of AKT was not altered. When Iressa
was used to inhibit EGFR the activation of MAPK 1,2, was blocked in response to EGF
in Ras wild type cells but not in cells with a Ras activation mutation. Similarly Iressa
blocked AKT activation of PTEN wild type cells but not in PTEN deletion cells. Having
observed expected outcomes we were very intrigued by results that were unexpected.
For example we found that in BT549 breast tumor cells PD 98059 elevated c-Src basal
phosphorylation levels in EGF stimulated cells. However, this was not the case in MDA-
MB-231 cells, where there was no increase in c-Src phosphorylation when compared
to control. This data suggests that by inhibiting MEK1 we are also increasing c-Src.
There could be two explanations for this result, the first being that MEK and c-Src are
connected through a signaling pathway in BT549 cells, or the second being that the MEK
inhibitor has non-specific activity on c-Src. However, based on the result in MDA-231
cells where there is no increase in c-Src it does not appear that there is a non-specific drug
effect on c-Src. From these results we checked our existing signaling network model to
find connectivity between MEK1 and c-Src, and found no existing pathway.

2.2 Pathway Prediction Results

From our experimental data we observe that inhibiting MEK1 results in an increase in
phosphorylation of c-Src in BT549 cells. In order to understand how inhibiting MEK1
could activate c-Src we performed a PubMed search and found no previously published
work describing MEK1 activation of c-Src. There were several publications showing
that c-Src could activate MEK1, but not vice versa.

Ordinarily when faced with this scenario of having an unexplained experimental
outcome and no previously described pathway from MEK1 to c-Src, the biological
investigator is faced with hours of literature searches in an attempt to find pair-wise in-
teractions that can connect MEK1 to c-Src. These searches frequently result in several
possible best guess pathways that the investigator would then have to check individu-
ally. This method of going down a laundry list of pathways to test is very inefficient
and uses valuable time, manpower and resources. Computational methods to identify
possible pathways focus this effort and allow the investigator to logically rank and test
the pathways based on the modeling prediction. We have developed such a method and
show here the use of our model and the use of iterative cycling between experiments
and modeling to rapidly advance our understanding of signaling networks.

The computational model predicts several pathways from MEK1 to c-Src based on
protein-protein interaction data (see Fig. 3). Some of the biologically-relevant char-
acteristics of the predictions include the prediction that all paths include SEK1 and
p38 which have been shown to be downstream from MEK1 [17,10]. The fact that our
method identified this biologically correct connectivity increases the confidence in the
predicted pathways. Downstream from p38 there is a predicted bifurcation of signal
with seven possible paths. However, these seven paths converge onto three molecules
c-CBL, Caveolin1, and FADK1 which are directly upstream from c-Src.
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Fig. 3. A graphical representation of the paths predicted leading from MEK1 to c-Src. Each inter-
action (edges) is labeled by the % of paths that it appeared in. Since this is the percent of predicted
paths that pass through a given interaction, this number can be taken as an estimate of the impor-
tance of the interaction among all the interactions in the prediction. Note that this number should
not be confused with the confidence that the interaction exists—all interactions depicted in this
graph had support values greater than 99.9% as reported by the STRING database.

This modeling result is very interesting because it offers testable hypotheses to direct
the experimental validation of the predictions. The first experiment is to knock out
SEK1 or p38, anticipating that this would completely knock out connectivity between
MEK1 and c-Src. Experiments to inhibit the connectivity in this pathway would include
using siRNA to knock out expression of SEK1 and p38, and chemical intervention
experiment by using a pharmacological inhibitor of p38. If we experimentally observe
that, when p38 is inhibited, there is no change in connectivity between MEK1 and c-Src
this would direct us back to make changes in the model. If we observe only partial loss
of connectivity when p38 is blocked, this would imply additional pathways not utilizing
p38, and this again would direct us back to refine our model. Additionally, knocking out
or pharmacologically inhibiting c-CBL, Caveolin1, or FADK1 should give one of three
results complete, partial, or no loss of connectivity between MEK and c-Src. Based on
the results from these experiments we would be able to determine novel connectivity
between MEK1 and c-Src in a quick and directed manner. Therefore, by this modeling-
based hypothesis-driven method, coupled with targeted experimental manipulations, we
can rapidly identify novel connectivity between signaling molecules and pathways.

3 Materials and Methods

3.1 Knockout Experiment Design

In order to quantify changes in several nodes of the signaling network in parallel we
used the reverse phase protein micro-array technology. Using this proteomic tool we
were able to measure changes in the activity state as well as total levels of expressed
proteins. The method is described below.
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Protein Lysate Micro Array. Arrays were prepared using cells lysed on ice with mi-
croarray lysis buffer (50 mM Hepes, 150 mM NaCl, 1mM EGTA, 10 mM Sodium
Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCl2, 10% glycerol, 1% Triton X-
100 plus protease inhibitors; aprotinin, bestatin, leupeptin, E-64, and pepstatin A). Cell
lysates were centrifuged at 15,000 g for 10 minutes at 4C. Supernatant was collected
and quantified using using a protein-assay system (Bio-Rad, Hercules, CA), with BSA
as a standard. Using a GeneTac G3 DNA arrayer (Genomic Solutions, Ann Arbor, MI),
six two-fold serial dilutions of cell lysates are arrayed on multiple nitrocellulose-coated
glass slides (FAST Slides, Whatman Schleicher & Schuell, Keene, N.H). Arrays were
produced in batches of 10. Printed slides were stored in dessicant at -20C. Antibodies
were screened for specificity by Western blotting. An antibody was accepted only if
it produced a single predominant band at the expected molecular weight. Each array
was incubated with specific primary antibody, which was detected by using the cat-
alyzed signal amplification (CSA) system (DAKO). Briefly, each slide was washed in a
mild stripping solution of Re- Blot Plus (Chemicon International, Temecula, CA) then
blocked with I- block (Tropix, Bedford, MA) for at least 30 minutes. Following the
DAKO universal staining system, slides were then incubated with hydrogen peroxide,
followed by Avidin for 5 minutes, and Biotin for 5 minutes. Slides were incubated with
primary and secondary antibodies then incubated with streptavidin-peroxidase for 15
minutes, biotinyl tyramide (for amplification) for 15 minutes, and 3,3-diaminobenzidine
tetrahydrochloride chromogen for 5 minutes. Between steps, the slide was washed with
TBS-T buffer. Each slide was probed with validated antibodies under optimal blocking
and binding conditions. Loading is determined by comparing phosphorylated and non-
phosphorylated antibodies as well as by assessing control antibodies to prevalent and
stable proteins. Six serial dilutions of each sample facilitate quantification and ensure
that any slide can be assessed with different antibodies. Multiple controls are placed
on each slide to facilitate quantification and robustness of the assay. Data are collected
and analyzed by background correction and spot intensity using Image J. Protein phos-
phorylation levels are expressed as a ratio to equivalent total proteins. Fold increases
in spot intensities were calculated against non-stimulated control samples. The follow-
ing antibodies were used: EGFR, c-Src, Stat3, MAPK1,2, AKT, S6K, MEK1, NFkB,
BAD, p38 MAPK, phosho c-Src, phospho Stat3, phospho AKT, phospho S6K, phospho
MEK1, phospho NFkB, phospho BAD, phospho p38 MAPK.

3.2 Predicting Novel Pathways Based on Knockout Results

After completing the set of knockout experiments, we conducted a novel computational
analysis to predict new pathways needed to explain the experimental results. This analy-
sis consisted of two main stages:

1. Identifying inconsistent results: in this step we identified any individual knockout
experiments that could not be explained by the model network. We call these results
inconsistent.

2. Constructing candidate pathways: for each inconsistent result, we performed an
exhaustive search of protein interaction data for hypothetical pathways that could
explain the result and augment the existing incomplete model.
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It is important to recall from Fig. 1 that there are multiple explanations for incon-
sistent results—only one of which is the incompleteness of the model. To be concrete,
the experimental results presented in this paper can also be explained by undesired drug
interactions with proteins other than MEK1. Our analysis finds several very viable path-
ways that may be missing from this network, making our approach valuable to the ex-
perimental biologist. However, in a complete analysis other sources of error must be
taken into account. We identify these other sources of inconsistency as directions for
future work, focusing in this paper only on the prediction of new pathways to handle
the case of an incomplete model.

In the following sections we provide a detailed description of the steps itemized
above.

Identifying Inconsistent Results. In order to determine which experimental results
were unexpected, it was necessary to select a model signaling network that contained
the complete set of known and relevant interactions. Since all of our experiments in-
volved proteins embedded in the EGFR network, we used a model based on an extensive
literature review of interactions in this network [11]. We stored the model signaling net-
work as a pathway graph model [14]. In this representation, each protein/protein-state
pair (e.g. AKT-inactive, AKT-active, and EGFR-phosphorylated) and each interaction
is represented by a node. Directed edges connect protein/state pairs to interactions (re-
actions) they participate in and connect reactions to protein/state pairs that are produced
as a result of the interaction. This representation explicitly depicts all experimentally de-
rived and published paths through the signaling network—allowing extensive analysis
of the connectivity within the network.

Recall that a knockout or inhibition result can indicate that a signaling pathway ex-
ists between two proteins (as was the case with MEK1 and c-Src in the experiments
described above). When a knockout or inhibition experiment yields such a result for
proteins X and Y, but no chain of directed interactions exists in the model network be-
tween X and Y, we call this result inconsistent—implying that the model is not capable
of explaining the result and requires the addition of a new pathway.

In order to identify inconsistent results, we first selected only those results which
indicated the presence of a signaling pathway between two proteins. For each of these
results, we used the constrained downstream algorithm [14] to enumerate all paths be-
tween the two proteins in the model. This algorithm performs an exhaustive search of
a pathway graph model for all paths connecting one set of proteins to another. In this
algorithm, the first protein is considered the source, the second protein is considered the
sink, and all paths found are directed from the sources to sinks, as they would occur in
the signaling network.

For the experiments we considered for this paper, the downstream algorithm reported
paths for all results except MEK1 to c-Src. The absence of any path from MEK1 to
c-Src indicates that the model cannot explain the inhibitory result observed between
these two proteins. As a result, this result was identified as an inconsistent result.

Constructing Candidate Pathways. In this step, given an inconsistent result, we seek
a set of candidate pathways, any of which can explain the result observed. For the
inconsistent result supporting a pathway between proteins X and Y, we know that the
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model has insufficient interactions to connect them. Therefore, we must look elsewhere
in order to find biologically-relevant interactions to connect these two proteins.

Protein interaction databases are, effectively, massive repositories of putative protein
interactions. Despite the fact that many of the interactions may not, in reality, occur,
these databases provide a good source of interactions to use when assembling hypo-
thetical pathways.

One issue that must be addressed is the fact that many studies have shown the in-
teractions in these databases to be of varying quality [4,2]. Since we seek biologically-
likely pathways which are, by definition, composed of biologically likely interactions,
we must have some way of evaluating the confidence of any given interaction in the
database. Significant work has been done into the problem of assigning confidence to
interactions [9,4,2,18,16]. In this study, we made use of the STRING database [19]
which provides interactions with confidence scores. However, using other interaction
databases and other confidence scoring schemes are equally valid approaches and, de-
pending on the interactions in the database and how confidence is estimated, may pro-
duce somewhat different results from ours.

Once a protein interaction database and confidence scoring scheme have been se-
lected, a protein interaction network can be constructed. This is a data structure that
combines the interactions in the database with the scoring scheme. In this network, a
node is a protein, an edge e = (u, v) is an undirected interaction between proteins u
and v. Each edge, e = (u, v) is assigned a weight equal to its log-likelihood score:
weight(e) = −log(c(e)), where c(e) is the confidence assigned to interaction e by the
scoring scheme.

When constructed as described, this network has the special property that the weight
of path 〈u1, u2, ..., un〉 within this network has the following correspondence to its total
support:

n−1∑

i=1

w((ui, ui+1)) = −log(
n−1∏

i=1

c((ui, ui+1))).

Since the function −log(x) approaches 0 as x → 1, the sum on the left will be small-
est when the individual path edges have confidence scores closest to 1. Therefore, the
shortest (lightest) path in the network between nodes X and Y corresponds to the most
biologically-likely pathway connecting the two proteins represented by nodes X and Y.

Since all paths within some confidence threshold probably correspond to some
biologically-likely pathway, we choose to search for the set of k-shortest paths—where
k is a parameter indicating how many paths we want to retrieve. Paths should be re-
ported in order of increasing weight so that the kth path is the longest (least
biologically-likely) of the paths returned by the search.

Significant work has been done on the problem of enumerating the k-shortest paths
and efficient algorithms exist for solving it [5,1]. For our purposes in this project, we
use a variant of the k-shortest path problem, called the k-shortest simple path problem
[22,13]. A simple path is one that contains no loops. The reason for this restriction
is that, while feedback loops are quite common in signaling pathways, we are only
interested in the simplest pathways that can explain the inconsistent results. Under the
log-likelihood transformation, edges with 100% support will have zero weight, creating
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the possibility of cycles in the graph. As a result, we choose to discard any short paths
that contain loops from the set of candidate pathways.

In our analysis, we used an implementation of Eppstein’s k-shortest paths algorithm
[5]. Non-simple paths were detected and removed from the output in order to give a
k-shortest simple paths algorithm. We ran the algorithm and found the 100 shortest
simple paths. A detailed analysis of these paths is given in Section 2.2.

As a final step in identifying the candidate pathways, direction must be imposed on
the paths extracted. The paths extracted from the protein interaction network are bi-
directional since the edges are undirected. For a result in which a knocking out protein
X caused a change in protein Y, the pathway direction is towards protein Y. In order
to model this in the interaction network, we always search for paths from X to Y and
report the the nodes of each path in the order in which they appear—from first to last.

3.3 The PathwayOracle Tool

In the past ten to fifteen years biologists have uncovered hundreds of interactions within
signaling pathways in biological systems. A challenge given this large amount of data
is to develop novel methods to probe the data and ask questions that cannot be an-
swered by experimental biology alone. On the other hand it is also vital to integrate the
experimental biology with the computational models and methods.

In order to address these issues, we have created the PathwayOracle software pack-
age which contains various tools enabling the computational analysis and extension of
experimental results and techniques [14]. The novel approach to pathway prediction
described in this paper is the most recent addition to the PathwayOracle package. In-
cluded with the implementation is the human subset of the interactions in the STRING
database, though other interaction datasets can be specified.

The entire toolkit is open-source, implemented in Java, and available upon request
from the authors. Additional information about other features and tools included in the
package is available on the website:
http://bioinfo.cs.rice.edu/pathwayoracle.
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