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Phylogenetic networks have emerged as a unifying evolutionary model of both vertical and horizontal inheritance.
A major approach for reconstructing such networks is to reconcile gene trees that are reconstructed from various

genomic regions. The Subtree Prune and Regraft (SPR) operation has been used to obtain lower bound estimates

of the number of reticulation events from a pair of trees. However, more than two trees are available in general and,
to date, no work exists on estimating the amount of reticulation by the SPR operation from a collection, not only a

pair, of trees.

In this paper we address this problem, and propose two algorithmic strategies for heuristically solving it. The
first is based on a simple, yet novel, observation on the binomial distribution of pairwise distances of trees inside a

network. The second is based on the aggregation of solutions from pairwise computations. We have implemented both

approaches and studied their performance in extensive simulations. The methods produce good results in general in
terms of estimating the minimum number of reticulation events required to reconcile a set of trees. In addition, we

identify conditions under which the methods do not work as well, in an attempt to help in the development of new

methods in this area.

1. INTRODUCTION

When the evolution of a group of species involves

reticulate, or non-treelike, evolutionary events, such

as horizontal gene transfer or hybridization, the evo-

lutionary history of the species is best modeled by

a phylogenetic network—a rooted, directed, acyclic

graph, leaf-labeled by a set of taxa. However, even

though the phylogenomic history of the organisms in

this case takes the shape of a network, the species’

genomes can be partitioned into regions each of

which has a treelike evolutionary history. This obser-

vation has been the basis for the tree-based approach

to phylogenetic network reconstruction: (1) infer the

evolutionary trees for the different genomic regions

(ideally, those genomic regions are recombination-

free), and (2) combine the set of trees into a phyloge-

netic network that satisfies some criterion. Extensive

surveys of phylogenetic network models, issues, and

reconstruction methods, have recently appeared in

the literature 1–7.

Several methods have been developed for infer-

ring a lower bound on the number of reticulation

events by identifying the minimum number of sub-

tree prune and regraft, or SPR, operations required

to transform one tree into the other 8. An SPR op-

eration applied to tree T cuts, or prunes, a subtree t

of T , yielding a tree T ′, and attaches, or regrafts, it

from its root to another branch in T ′ 9. Underestima-

tion issues notwithstanding 10, 11, 7, the SPR-based

approach has been heavily used as a proxy for in-

ferring (lower bound on) the number of reticulation

events, as well as their placement in the evolutionary

history. The problem of computing the SPR distance

between two trees has been shown to be NP-hard as

well as fixed-parameter tractable 12. Examples of

exact algorithms and heuristics for reconciling trees

via SPR operations include the exact algorithm of

Bordewich and Semple 12, the exact algorithm of

Wu 13, LatTrans 14, RIATA-HGT 15, 16, EEEP 17,

HorizStory 18, and the method of Goloboff as imple-

mented in the TNT software package 19. However,

one salient feature of all these methods is that they

only apply to a pair, but not a larger set, of trees.

With the availability of whole-genome data from

an increasingly large number of organisms, par-

ticularly prokaryotic ones, evolutionary studies are

∗Corresponding author.
aIn this context, the term “gene tree” applies to an evolutionary tree of any non-recombining genomic region; i.e., it is not limited

to trees on (protein-coding) gene regions.
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faced with a large number of gene treesa in a given

study. Therefore, it is imperative to develop com-

putational techniques that simultaneously analyze a

large number of trees, and combine them into net-

works. Clearly, the problem is NP-hard when the

SPR distance is used, since it is NP-hard for a pair

of trees. Huson and Rupp 20 proposed a method for

summarizing a collection of gene trees using cluster

networks, which differ from the phylogenetic network

model we address here. More Recently, Beiko and

Ragan 21 discussed aggregating inferred HGT events

from pairwise tree comparisons, and discussed three

strategies for this task; yet, they did not implement

the strategies, nor did they study their performance.

In this paper, we address the problem of inferring

a phylogenetic network with the minimum number

of reticulation events that reconciles a collection of

gene trees using the SPR operation. We present two

heuristic algorithms, one that is based on the ob-

servation of a binomial distribution of the pairwise

distances of a collection of trees contained in a net-

work, and the second is based on agglomerating pair-

wise solutions to obtain a global, hopefully minimal,

solution for all trees. We have implemented both

algorithms and studied their performance, in terms

of the number of reticulations they infer from a set

of trees, on a large number of simulated data sets.

Results indicate very good performance of the meth-

ods in general, and highlight conditions under which

the methods’ performance is not as good. The lat-

ter issue is particularly important, since it may help

develop more accurate methods for this problem.

The rest of the paper is organized as follow. In

Section 2 we give an explicit definition of the phy-

logenetic network model that we use in this paper,

and its relationship to trees. This is very important,

since the term ‘phylogenetic network’ has been used

in different contexts to mean different things as well

as to have different properties 7. In Sections 3 and 4,

we describe two algorithmic strategies for estimat-

ing the minimum number of reticulations based on

the distribution of pairwise SPR distances and the

agglomeration of pairwise SPR moves, respectively.

In Section 5 we demonstrate the performance of both

algorithmic strategies on a large number of simulated

data. We conclude in Section 6 with final remarks

and some directions for future research.

2. BACKGROUND

In this paper, we focus on rooted, binary trees and

networks.

Definition 2.1. A phylogenetic X -network, or X -

network, N is an ordered pair (G, f), where

(1) G = (V, E) is a directed, acyclic graph (DAG)

with V = {r} ∪ VL ∪ VT ∪ VN , where

(a) indeg(r) = 0 (r is the root of N);

(b) ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL
are the leaves of N);

(c) ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT
are the tree-nodes of N); and,

(d) ∀v ∈ VN , indeg(v) = 2 and outdeg(v) ≥ 1

(VN are the network-nodes of N),
(e) and E ⊆ V × V are the network’s edges.

(we distinguish between network-edges, edges

whose heads are network-nodes, and tree-

edges, edges whose heads are tree-nodes or

leaves.)

(2) f : VL → X is a bijection function from VL to X .

A phylogenetic X -tree is an X -network in which

VN = ∅. While a network N represents the evolution

of a set of genomes, these genomes can be partitioned

into (non-recombining) regions R1, R2, . . . , Rk, each

of which has a treelike evolutionary history Ti. In

other words, the set T = {T1, . . . , Tk} is a subset of

the set of all trees induced by the network N . More

formally, T ⊆ T (N), where T (N) is the set of all

trees obtained as follows from N : (1) for each node

of in-degree 2 remove one of the two incoming edges

and (2) for each node u of in-degree and out-degree

1, remove u along with its incident edges, and add a

new edge to connect u’s parent to u’s child (this step

is repeated until no such nodes u remain).

Given an X -network N , it is straightforward to

compute the set T (N), though this computation may

be expensive, since |T (N)| = O(2|VN |). The more

relevant problem in the context of inferring phy-

bIt is highly unlikely for a biological data set to exhibit all trees induced by the network; in practice, the set of trees exhibited

by the different genomic regions is a small subset of all possible trees induced by the network.
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logenetic relationships is that of estimating an X -

network from a subsetb of its induced trees, since

this amounts to inferring the (reticulate) evolution-

ary history of a set of organisms.

Problem 2.1. Given a set of X -trees T =

{T1, T2, . . . , Tk}, each modeling the evolutionary his-

tory of a genomic region, we seek the X -network that

models the evolutionary history of the genomes.c

Obviously, if all trees in T are identical, the problem

is trivial since N would be the tree in T . Other-

wise, the problem is hard. Given that there is a very

large number of X -networks N such that T ⊆ T (N),

the main issue in this domain is to define a criterion

Φ and seek the X -network (or, set of X -networks)

that is optimal Φ, given the set T of trees. A natu-

ral parsimony criterion to define is to minimize the

number of network-nodes in N . In other words, we

seek the network (or set of networks) N such that (1)

T ⊆ T (N), and (2) N has the minimum number of

network-nodes among all X -networks satisfying (1).

While the “true” phylogenetic network may not nec-

essarily be a parsimonious one, this criterion yields

plausible networks in many realistic cases (although

it is easy to show examples of cases in which this cri-

terion results in networks with numbers of network-

nodes that are arbitrarily smaller than the true num-

ber 7). In particular, this criterion can be viewed as

a way to estimate a lower bound on the amount of

reticulation in the data. When T = {T1, T2}, a solu-

tion to the problem is to compute the SPR distance 9

between the two trees, denoted by dSPR(T1, T2), and

take it as the estimate of the number of network-

nodes in the X -network N that induced both trees

in T . An SPR (Subtree Prune and Regraft) opera-

tion applied to a tree T1 is defined by pruning a sub-

tree t in T1, and regrafting t from its root to another

branch in T1 (that is not in t). Given two X -trees T1
and T2, T1 can be transformed into T2 by a sequence

of SPR moves, and the length of the shortest such

sequence is defined as the SPR distance between the

two trees.

In this paper we address the problem of esti-

mating an X -network, with the minimum number of

network-nodes, that induces a given set of trees T .

This problem is NP-hard, given that is NP-hard for a

pair of trees 12. As we show below, our investigation

of simulated data sets indicates that, in practice, one

factor that may affect the hardness of the problem

is the redundancy in the network, which we define as

follows.

Definition 2.2. The redundancy of an X -network

N with set VN of network-nodes is εN = (2|VN | −
|T (N)|)/2|VN |.

Figure 1 illustrates the concept of redundancy.

A B C D

h1

h2

A B C D

h1 h2

A B C D

h1 h2

N1 N2 N3

Fig. 1. Three X -networks, each with two network-nodes,

yet with varying degrees of redundancy. Here, T (N1) =
{T1}, T (N2) = {T1, T2}, and T (N3) = {T1, T2, T3, T4},
where T1 = ((A, (B,C)), D), T2 = (((A,B), C), D), T3 =
(A, (B, (C,D))), and T4 = ((A,B), (C,D)). Consequently, we

have εN1
= (4 − 1)/4 = 0.75, εN2

= (4 − 2)/4 = 0.50, and

εN3 = (4− 4)/4 = 0.

In a non-redundant X -network N (εN = 0), each

tree in T (N) is uniquely induced by the network,

whereas in a redundant network (εN > 0), some

trees may be induced in multiple ways. An upper

bound on εN for an X -network with h network-nodes

is 1− 1/2h, in which case the network induces a sin-

gle tree and, considering topology alone, none of the

reticulation events may be detectable.

3. FITTING A BINOMIAL
DISTRIBUTION OF PAIRWISE
DISTANCES

Let VN = {v1, . . . , vh} be the set of all network-nodes

in an X -network N , and for each two edges incoming

into a node vi ∈ VN , let one be labeled l (for left)

and the other be labeled r (for right). Further, let

T ∈ T (N) be a tree induced by the network. A dis-

playing vector of T , denoted by d(T ) is an element

of {l, r}h, where d(T )[i] denotes the label of the edge

incoming into vi that was retained to induce the tree

cIt is important to note that while we focus on collections of trees that have the same leaf labels, in practice gene trees may differ

in their leaf labels (e.g., due to sampling, gene duplication, gene loss, etc.).
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T . We have the following two lemmas and ensuing

theorem.

Lemma 3.1. Let N be an X -network. Then, d(T )

is unique for every tree T ∈ T (N) iff εN = 0.

Lemma 3.2. Let D = {l, r}h. Then |{{d1, d2} :

d1, d2 ∈ D, HD(d1, d2) = q}| =
(
h
q

)
2h−1, where

HD(d1, d2) denotes the Hamming distance between

the two binary vectors d1 and d2.

Theorem 3.1. Let N be an X -network with

h network-nodes, and assume dSPR(T1, T2) =

HD(d(T1), d(T2)) for every T1, T2 ∈ T (N). If εN =

0 then |{{T1, T2} : T1, T2 ∈ T (N), dSPR(T1, T2) =

q}| =
(
h
q

)
2h−1.

Theorem 3.1 implies that when there is no redun-

dancy in the network, and given that we do not know

the actual displaying vectors of the trees, we can use

the SPR distance as a proxy to the Hamming dis-

tance of the displaying vector, and expect a bino-

mial distribution of the pairwise distances. This, in

turn, naturally gives rise to the following approach

for estimating the minimum number of reticulations

required in a phylogenetic network to reconcile a set

T of trees:

(1) Compute all pairwise SPR distances over the set

T of trees, and let Q be the distribution of these

distances.
(2) Denoting by Pm the distribution

(
m
q

)
2m−1 for

1 ≤ q ≤ m, find the value m that minimizes

KL(Q|Pm), where KL is the Kullback-Leibler

distance 22 KL(g|f) =
∑

q f(q) ln f(q)
g(q) .

The way we compute the value of m in Step (2) in

the above procedure is by starting from

m = max{dlog2 |T |e, max
T1,T2∈T

dSPR(T1, T2)} (1)

and incrementing m as long as KL(Q|Pm) decreases.

The rationale behind Equation (1) is that the log2 of

the number of trees in the given set is a lower bound

on the number of reticulations, and so is the maxi-

mum pairwise SPR distance over all trees in the set.

Obviously, the conditions of Theorem 3.1 may

not hold in practice. In particular, it may be that

some or all of the following issues arise when analyz-

ing a data set:

(1) It may be that for some pairs of trees T1, T2 ∈
T (N), dSPR(T1, T2) < HD(d(T1), d(T2)). In

this case, the distribution of the pairwise dis-

tances may be skewed to the left. A potential

alternative for considering the minimum number

of SPR moves is to take a stochastic approach

that simulates random walks, using SPR moves,

in the tree space 23.
(2) The (unknown) network N may have εN > 0.

Here, the frequencies of some pairwise distances

may be lower than the true frequencies (which

are the ones based on Pm).
(3) The given set of trees T does not contain all trees

induced by the (unknown) network N . Here, not

enough data points may be available for reliably

estimating the true distribution Q.

Nevertheless, we show below, through extensive sim-

ulations, that this heuristic provides good estimates

of the number of network-nodes required for a net-

work to reconcile a given set of trees.

4. COMBINING PAIRWISE
SOLUTIONS

While the approach in the previous section is aimed

at estimating only the minimum number of reticula-

tions needed in a phylogenetic network to reconcile a

set of trees, the approach we present here is aimed at

estimating minimal sets of actual SPR moves (obvi-

ously, the sizes of such sets can be taken as estimates

of the amount of reticulation). The general outline

of the method we propose here for estimating a set

of SPR moves to reconcile a set of trees T is sim-

ple (similar to the greedy approach for aggregating

inferred HGT events in 21):

(1) For each pair of trees in T , identify a minimal

set of SPR moves that reconcile them.

(2) Combine the set of solutions identified in Step

(1).

There are two main issues that need to be addressed

for this approach to work in practice. First, for

a given pair of trees, there may be multiple mini-

mal sets of SPR moves that reconcile them 24. In

this case, we need the pairwise SPR computation

to return all, or a large number, of these minimal

solutions. We make use of the modified version of
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RIATA-HGT 15, 25, as implemented in PhyloNet 16,

to compute multiple minimal solutions. The second

issue is two-fold: (a) Given a set of minimal sets of

SPR moves for each pair of trees, how do we find

a global minimal set of SPR moves that covers at

least one minimal set for each pair? (b) Once the

(global) minimal set is computed, how do we obtain

a network from it?

In the case of the horizontal gene transfer de-

tection problem, usually a species tree ST is given,

in addition to the set of trees T . In this case, the

pairwise computations should be conducted only be-

tween ST and every tree in T , but not between pairs

of trees in T . Then, the global set of SPR moves

computed by the procedure above is posited on the

tree ST . In the case where no “backbone” tree, such

as ST , is given, we propose to use each of the k trees

in T as a backbone tree against each all SPR compu-

tations are conducted, and choose the tree in T that

results in the smallest set of SPR moves.

We use this idea in the heuristic Compute-

SPRsMultiGenes below. Let ST be an (species)

X -tree and T = {T1, . . . , Tk} be a collection of (gene)

X -trees. Further, let Z be the set of all possible SPR

moves that can be defined on ST (the cardinality of

Z is quadratic in the number of leaves in ST 9). For

each tree Ti ∈ T , let SPR(ST, Ti) = {S1
i , . . . , S

wi
i }

be the set of minimal sets of SPR moves that trans-

form ST into Ti. Our task is to find a minimal set

z ⊆ Z such that for every 1 ≤ i ≤ k, there exists

1 ≤ `i ≤ wi such that S`i
i ⊆ z. In other words,

we seek a minimal set z of SPR moves that cover

at least one minimal “solution” for each gene tree.

Clearly, each tree in T can be obtained by applying

a subset (or all) of the SPR moves in z to ST . This

is a hard problem, and we solve it heuristically, as

described in the following algorithm.

ALGORITHM ComputeSPRsMultiGenes

1. For each gene tree Ti ∈ T
1.1. initialize count: c(r) = 0 for every SPR move

r in Z;

1.2. for each gene tree Tj ∈ T and Tj 6= Ti
1.2(a). compute SPR(Ti, Tj);

1.3. for each SPR move r, compute count

c(r) = |{j|r ∈ solution s and s ∈ SPR(Ti, Tj)}|;
1.4. for each gene tree Tj ∈ T and Tj 6= Ti

1.4(a). for each solution s ∈ SPR(Ti, Tj),

compute count c(s) =
∑

k{c(rk)|rk ∈ s};
1.4(b). choose a solution s, ˆSPR(Ti, Tj) =

{s|c(s) >= c(s′) for all s′ 6= s, s′ ∈ SPR(Ti, Tj)};
1.5. compute the union Ri =

⋃
Tj∈T ,Tj 6=Ti

{s|s ∈
ˆSPR(Ti, Tj)};

2. choose R = Rl such that |Rl| = mini(|Ri||1 ≤
i ≤ k) along with the corresponding tree Tl ∈ T .

5. EXPERIMENTAL EVALUATION

5.1. Experimental Setup

To simulate phylogenetic networks, we used two

tools: the PHYL-O-GEN tool 26 for generating ran-

dom “species trees” under the birth-death model,

and the tool of Galtier 27 to simulate horizontal gene

transfer events (HGTs) between pairs of branches of

the species trees. Since Galtier’s tool adds a random

number of HGTs and does not report the number,

or placement, of those events, we modified the tool

so that the output includes the actual HGT edges

that it adds. The direct parameters in our exper-

iments are the number of taxa and the number of

HGTs simulated. For the number of taxa (leaves in

the trees and networks), we used 10, 20, 30, and 50,

and for the number of HGTs, we used 5 (for trees

with 10, 20, and 30 leaves) and 10 (for trees with 50

leaves). For each number of taxa, we generated 10

trees with that number of leaves. Each such (species)

tree was used as an input to Galtier’s tool to simu-

late HGTs and create networks. For each (species)

tree and specific number of HGTs, 12 networks were

generated. In total, for each of the combinations

(10 taxa, 5 HGTs), (20 taxa, 5 HGTs), (30 taxa, 5

HGTs), and (50 taxa, 10 HGTs), we generated 120

networks, for a total of 480 networks (in the case of

30 taxa, pairwise SPR distances were overestimated

in certain cases, which we removed from the anal-

ysis, to control for problems with pairwise distance

estimation. As a result, the number of 30-taxon net-

works was 80, instead of 120). For each network N ,

we computed, using PhyloNet 16, the set of its in-

duced trees T (N), and sampled from this set (so as

to simulate phylogenomic trees) collections of gene

trees, and gave those as inputs to our methods. In

other words, each method was run on a collection
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of trees generated from network. To obtain statis-

tically significant results, we repeated the sampling

process 30 times for each sample size, and plotted

the averages.

An explanation on what we measure is in order.

When either of the two methods is run on a collec-

tion T = {T1, . . . , Tk} ⊆ T (N) induced by network

N , we record the number of reticulations that the

method computed; we call this number the detected

number of reticulations. Now, if network N was gen-

erated with 5 or 10 HGTs, this does not necessarily

mean that the collection T of trees will have all trees

to allow for detecting 5 or 10 HGTs, respectively.

For example, consider the collection T that has only

trees whose (pairwise) SPR distance is 1. In this

case, the number of detectable HGTs is 1, and not

5 (or 10). Therefore, for each such collection T , we

compute (exhaustively) the smallest subset of HGTs

in N that can reconcile all trees in T ; we call this

number the detectable number of reticulations (no-

tice that this is not necessarily the smallest number

of reticulations needed to reconcile all trees in T ;

computing this number would be prohibitive). The

accuracy of method is considered better as the differ-

ence between the detectable and detected numbers of

reticulations becomes smaller.

We ran both methods on all data sets. In the

next section, we refer to the method that fits the pair-

wise distances to a binomial distribution Method

M1 (see Section 3), and to the method based on the

union of pairwise SPR move sets Method M2 (see

Section 4).

5.2. Results and Discussion

Due to space limitations, we show the results only

for the 30- and 50-taxon data sets; we observed very

similar trends in the cases of the 10- and 20-taxon

data sets. Figure 2 shows the accuracy, in terms of

the difference between detectable and detected num-

bers of reticulation events, of Method M1, while

Figure 3 shows the accuracy of Method M2.

In the case of 30 taxa, sampled trees are selected

from the network that contains (25 =) 32 different

trees. There are 80 such networks, each of which

was sampled with sample sizes of 2, 4, 8, 12, 16, and

24. Therefore, at each point of the x-axis in Fig-

ures 2(a) and 3(a), the result shows the distribution

of the number of reticulation events for 80 different

gene tree sets. Figures 2(b) and 3(b) show the results

for sampled gene tree sets in 120 different networks

with 50 taxa and 10 HGTs. Each of these networks

contains up to 1024 different trees. From them, sam-

pled gene tree sets are chosen with sample sizes of 2,

4, 8, 12, 16, 24, and 32. For each of the sampling

sizes and each of the networks, we sampled 30 times.

Therefore, at each point of the x-axis in Figures 2(b)

and 3(b), the result is the distribution of the num-

ber of reticulation events for 3600 different gene tree

sets.

As the figures show, both methods perform very

well on the 30-taxon data sets, with the median dif-

ferent between detectable and detected numbers of

reticulations, for both methods, falling at zero. In

the case of Method M1, there is an improvement

in the accuracy as the sample size increases, as is ev-

ident from the lack of outliers and the convergence

to the median value of 0. This is because, as the

sample size increases, the data points become much

denser so that fitting the binomial distribution be-

comes easier. Nonetheless, even for very sparse sam-

ples (sizes 4 and 8), the method still performs very

well, as shown in Figure 2(a). Method M2, on the

other hand, does not show clear improvement with

increased sample size; to the contrary, more outliers

emerge as the sample size increases (Figure 3(a)).

One reason behind this is that as the sample size in-

creases and the SPR move sets become larger, a more

careful handling of the union of those sets is required

than we employ in our heuristics. In some sense, this

problem becomes similar to the Inclusion-Exclusion

principle, where one has to avoid double-counting.

For the 50-taxon data sets, both methods also

perform well, particularly Method M1. Even

though both methods tend to overestimate the

amount of reticulation in these cases (as shown by

the negative values in Figures 2(b) and 3(b)), the

under-estimation is very mild on average. It is worth

mentioning that the results in Figure 3(b) come from

much smaller sampled gene tree sets (less than 4%).

From the results shown in Figures 3(a) and 3(b),

sampling with size of 2, or only given a pair of

gene trees, is not sufficient to estimate true num-

ber of reticulation events. For sampling with the

sizes larger than 2, the results are very close to the
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Fig. 2. Performance of Method M1 on the 30-taxon (a) and 50-taxon (b) data sets as a function of the sample size.
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Fig. 3. Performance of Method M2 on the 30-taxon (a) and 50-taxon (b) data sets as a function of the sample size.

true number of reticulation events (5 in Figure 3(a)

and 10 in Figure 3(b)) in most cases, having a differ-

ence of up to 2. Method M2 tends to overestimate

the number of reticulation events. In the worst case,

the estimated results could double the actual num-

ber of reticulation events. However, the median of

the distribution and the results for most cases have

a converging trend when the sampling size increases.

Finally, we set out to investigate the effect of

the actual sample of trees on the performance of the

methods, particularly Method M1, since it is sen-

sitive to the distribution of pairwise distances. For

each actual network-node (reticulation event) in a

simulated network N , roughly half of the trees in

T (N) use one parent, whereas the other half use the

other parent. We hypothesize that the detectability

of a reticulation node is easy when half of the gene

trees give signal about one of its parents, while the

other half give signal about its other parent. In Fig-

ure 4, we plot the performance of Method 1 on the

50-taxon data sets, as a function of the deviation of

the trees in a sample from the balanced coverage of

each reticulation event (written as “distribution de-

viation from 1/2” on the x-axis). Clearly, there is

a correlation between the deviation from a balanced

coverage of reticulation events by the trees in a sam-
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Fig. 4. Inspection of over- and under-estimation of Method 1 as a function of the distribution deviation from 1/2 (see text

for more details). Black, blue and red dots represent correct, under-, and over-estimations, respectively, of the method. Left to
right, top down: sample sizes 4, 8, 12, 16, 24, and 32 (all on 50-taxon data sets).

ple and the estimation trend: over-estimations occur

at lower deviation from balanced coverage, followed

by correct estimation at higher deviations, and fi-

nally under-estimations occurring at the highest de-

viation from balanced coverage. We do not have a

clear answer to why this is the case, but this leads to

an interesting question about the effect of the balance

of trees in a set on the detectability of reticulations.
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6. CONCLUSIONS AND FUTURE
RESEARCH

The increasing availability of whole-genome and

multi-locus data has highlighted the need for com-

putational tools that enable phylogenomic analyses.

One such analysis entails comparing gene trees in a

group of organisms, identifying their differences, and

using this information to elucidate the evolutionary

mechanisms that acted on the organisms during the

course of their evolution. In prokaryotic organisms,

it is widely believed that horizontal gene transfer

(HGT) is ubiquitous, and that it plays an important

role in genomic diversification.

Mathematically, the subtree prune and regraft,

or SPR, distance between a pair of trees has been

commonly used as a proxy for a lower bound on the

number of HGT events, or reticulations. As a re-

sult, a wide array of mathematical results and com-

putational tools have been developed around this dis-

tance. Nonetheless, most of these results and tools

apply to a pair of trees, which is a shortcoming, par-

ticularly for phylogenomic studies involving many

trees.

In this paper, we addressed the problem of esti-

mating the amount of reticulation that is detectable

in a collection of gene trees, assuming all incongru-

ence among the trees is due to reticulate evolution

(i.e., ruling out any other discord processes, such

as incomplete lineage sorting, gene duplication/loss,

etc.). We provided two algorithmic strategies for this

task, both of which showed promising results in sim-

ulations.

Our main task for future research is to apply

these strategies to real data, not only to assess the

performance of the methods, but also to better un-

derstand reticulate evolution in prokaryotes. How-

ever, in addition to going beyond two trees, a major

challenge needs to be addressed in order to apply

tools to real data. While almost all results and tools

developed for the SPR distance problem assume the

trees have the same leaf labels, this may not be the

case in phylogenomic studies. In particular, incom-

plete taxon sampling and disparity in sequence cov-

erage for different organisms may result in “missing”

genes for some organisms. Biologically, gene dupli-

cation and loss may result in multiple or no copies

of certain genes in some organisms. Further, a hori-

zontal gene transfer event from outside the group of

organisms under study may give rise to genes that

are present in some, but not all, of the organisms.

Last but not least, HGT events across genes may not

be independent, as a single event may result in the

transfer of a large genomic region that contains mul-

tiple genes. All these issues need to be addressed in

order to facilitate a true phylogenomic study; other-

wise, analyses would have to be restricted to a small

fraction of the genomic data, rendering their results

and conclusions unreflective of the true, global pic-

ture 28.
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