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ABSTRACT

Motivation:Horizontal gene transfer (HGT) is believed tobeubiquitous

amongbacteria,andplaysamajor role in their genomediversificationas

well as their ability to develop resistance to antibiotics. In light of its

evolutionary significanceand implications for humanhealth, developing

accurate and efficient methods for detecting and reconstructing HGT is

imperative.

Results: In this article we provide a new HGT-oriented likelihood

framework for many problems that involve phylogeny-based HGT

detection and reconstruction. Beside the formulation of various like-

lihood criteria, we show that most of these problems are NP-hard,

and offer heuristics for efficient and accurate reconstruction of HGT

under these criteria. We implemented our heuristics and used them

to analyze biological as well as synthetic data. In both cases, our

criteria and heuristics exhibited very good performance with respect

to identifying the correct number of HGT events as well as inferring

their correct location on the species tree.

Availability: Implementation of the criteria as well as heuristics and

hardnessproofs are available from theauthors upon request.Hardness

proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/

MLNET/Supp-ML.pdf

Contact: tamirtul@post.tau.ac.il

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Unlike eukaryotes, which evolve largely through vertical lineal

descent, bacteria acquire genetic material through the transfer of

DNA segments across species boundaries—a process known as

horizontal gene transfer (HGT). This process plays a major role

in bacterial genome diversification (Doolittle et al., 2003), and is a

significant mechanism by which bacteria develop resistance to

antibiotics (Paulsen, 2003). In the presence of HGT, the evolution-

ary history of a set of organisms is modeled by a phylogenetic

network1, which is a directed acyclic graph obtained by positing

a set of edges between pairs of the branches of an organismal tree to

model the horizontal transfer of genetic material (Moret et al.,
2004).

Therefore, to reconstruct an accurate Tree (or Network) of Life

and to unravel bacterial genomic complexities, developing accurate

criteria and efficient methods for reconstructing and assessing

the quality of phylogenetic networks is imperative. A large body

of work has been introduced in recent years to address phylo-

genetic network reconstruction and evaluation. In general, three

categories of non-tree-like models have been addressed, all of

which have been introduced under the umbrella concept of phylo-

genetic networks. However, major differences exist among the three

categories. Splits networks (e.g. Huson and Bryant, 2006) are

graphical models that capture incompatibilities in the data owing

to various factors, not necessarily HGT or hybrid speciation. The

second category is that of recombination networks (e.g. Gusfield

and Bansal, 2005), which are used to model the evolution of

haplotypes and genes at the population level. HGT networks are

the extension of phylogenetic trees to enable the modeling of reti-

culation events, such as HGT and hybrid speciation [these are also

called reticulate networks in Huson and Bryant (2006)]; Henceforth,

we refer by phylogenetic networks to the latter type. See Linder

et al. (2004) for a detailed survey of the various phylogenetic net-

work models and methodologies.

One of the most accurate and commonly used criteria

for reconstructing phylogenetic trees is maximum likelihood

(ML) (Felsenstein, 1981). Roughly speaking, this criterion consi-

ders a phylogenetic tree from a probabilistic perspective as a

generative model, and seeks the model (i.e. tree) that maximizes

the likelihood of observing a given set of sequences at the leaves of

the tree.

Likelihood in the general network setting has been investigated

in the past by various works. However, no HGT-specific-

likelihood framework has ever been suggested. von Haeseler

and Churchill (1993) provided a framework for evaluating like-

lihoods on networks and subsequently (Strimmer and Moulton,

2000) provided an approach to assess this likelihood. These

works consider the network as an arbitrary set of splits and

therefore fall into the first category. They are characterized by

the combined analysis approach, which entails combining all

gene datasets first (by sequence concatenation), and then analyze

the combined dataset. A serious drawback of this approach is

that when individual genes are governed by different evolutionary

mechanisms and models (a scenario that is very common in reti-

culate evolution), combining multiple data sets is problematic

(Nakhleh et al., 2003). Likelihood on networks has also been con-

sidered in the setting of recombination networks (e.g. Husmeier and

McGuire, 2002). These methods, similar to ours, are tailored to

identify breakpoints along the given sequences; however, their

underlying model is different from ours as they model a

different process.

�To whom correspondence should be addressed.
1The evolutionary history of groups of higher organisms, such as plants and

fish, may also be more appropriately modeled by phylogenetic networks,

owing to processes such as hybrid speciation (Linder and Reiseberg, 2004).
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In this work, we extend the ML criterion to handle specifically

HGT-oriented phylogenetic networks, and propose a set of criteria

and efficient heuristics for computing them. Our extension is based

on the fundamental observation that, barring recombination, the

evolutionary history of a gene is modeled by a tree, such that a

phylogenetic network can be modeled by its constituent trees

(Nakhleh et al., 2005). We propose a set of ML criteria for phylo-

genetic networks; these criteria differ in how the tree information is

used, which variant of the ML criterion is used and finally what

input is provided. Further, we investigate the computational com-

plexity of some of these criteria and devise a set of efficient heuris-

tics for reconstructing and evaluating phylogenetic networks based

on them. In particular, we prove that scoring the likelihood of a

phylogenetic network is NP-hard in general, and provide an empiri-

cally efficient exact algorithm for the problem, relying on the notion

of bi-connected components. Further, we devise an efficient branch-

and-bound heuristic and EM algorithm for the problem of adding a

number of HGT edges to a tree to obtain an optimal phylogenetic

network.

We have implemented our criteria and heuristics and studied their

performance on biological as well as synthetic data. For the bio-

logical data, we analyzed two datasets. The first dataset includes the

Rubisco gene in eubacteria and plastids, which was previously

analyzed by Delwiche and Palmer (1996), who postulated a set

of HGT events for it. The second dataset includes ribosomal protein

rpl12e of a group of 14 Archaeal organisms, which was suspected to

include HGT events (Tailliez et al., 2002).

For the synthetic data, we simulated multiple datasets with vari-

ous HGT events and applied our techniques to the data. In both

cases, our criteria and heuristics performed very well with respect to

the identification of the correct number of HGT events as well as

their placements on the organismal trees.

2 MAXIMUM LIKELIHOOD OF PHYLOGENETIC
NETWORKS

2.1 Preliminaries and definitions

Let T ¼ (V, E) be a tree, where V and E are the tree nodes and

tree edges, respectively, and let L(T) denote its leaf set and I(T)

its internal nodes. Further, let x be a set of taxa (species). Then, T
is a phylogenetic tree over x if there is a bijection between x and

L(T). Henceforth, we will identify the taxa set with the leaves

they are mapped on to, and let ½n� ¼ f1‚ . . . ‚ng denote the set of

leaf-labels. A tree T is said to be rooted if the set of edges E is

directed and there is a single distinguished internal node r with

in-degree 0.

A phylogenetic network N¼ N(T) ¼ (V0, E0) over the taxa set x is

derived from a rooted tree T¼ (V, E) by adding a set H of edges to T,

without creating cycles, where each edge h 2 H is added as follows:

(i) split an edge e 2 E by adding new node, ve; (ii) split an edge e0 2
E by adding new node, ve0 ; and (iii) finally, add a directed

reticulation edge from ve to ve0 . The resulting network is a rooted

directed acyclic graph.

Figure 1a shows a phylogenetic network obtained by adding the

edge (X, Y) to the underlying organismal tree.

The tree in Figure 1b models the evolution of all genetic

material that is vertically inherited from the ancestral organism

(the species tree), whereas the tree in Figure 1c models the

evolution of horizontally transferred genetic material. We denote

by T(N) the set of all trees contained inside network N. Each such

tree is obtained by the following two steps: (i) for each node of

in-degree 2, remove one of the incoming edges, and then (ii) for

every node x of in-degree and out-degree 1, whose parent is u
and child is v, remove node x and its two adjacent edges, and

add a new edge from u to v. For example, the set T(N) of the network

N in Figure 1a contains only the two trees that are shown in

Figure 1b and 1c.

2.2 Likelihood of phylogenetic networks

Under the ML criterion, a phylogenetic tree is viewed as a

probabilistic model from which input sequences S are assumed

to be sampled. For given input sequences S the i-th site, Si, is

the set of values at the i-th position for every sequence in S.2

In this article, we assume that the sites are independently and

identically distributed (iid). Since the parameters of the phylo-

genetic tree, M, are unknown, they are usually estimated from

A C

X Y

B D

A CB D

A CB D

(a)

(b)

(c)

Fig. 1. (a) A phylogenetic network with a single HGT event from X to Y.

(b) The underlying organismal (species) tree. (c) The tree of a horizontally

transferred gene.

2Can be viewed as the i-th column when the sequences are aligned.
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the observed sequences by maximizing the likelihood

function P(S jM) (Felsenstein, 1981). In general, the overall

likelihood of the aligned sequences S given the model M is

obtained by the product of the likelihood of every site i given M
as follows:

LðS jMÞ ¼
Yk

i¼1

LðSi jMÞ‚ ð1Þ

where k is the sequence length. Therefore, unless explicitly

indicated, we will consider the likelihood of a single site

henceforth. The most likely model is the one maximizing

Equation (1).

When calculating the likelihood of a tree for a given site, two

variants are considered: average likelihood (Steel and Penny, 2000)

and ancestral likelihood (Pupko et al., 2000) (the former is the more

popular of the two). The ML criterion assumes a model of evolution.

We consider here the Jukes–Cantor model of sequence evolution

(Jukes and Cantor, 1969). However, all the results here can be easily

generalized to any other group-based model of sequence evolution.

Our concept and major parts of our results can also be generalized to

cases when independence across edges is not maintained. Given a

set of aligned sequences S 2 Sn·k, a tree T with I(T) internal nodes

( j IðTÞ j � n � 2), and the edge transition probabilities p,

LavðSi j T‚pÞ, the average likelihood of obtaining site Si under T
is defined as follows:

LavðSi j T‚pÞ ¼
X

a2S j IðTÞ j

Y

e2EðTÞ
mðpe‚Si‚aÞ‚ ð2Þ

where a ranges over all combinations of assigning labels to the I(T)

internal nodes of T. Each term m(pe, Si, a) is either pe/ð jS j � 1Þ or

(1 � pe), depending on whether in the i-th site of S and a, the two

endpoints of e are assigned different character states [and then

mðpe‚Si‚aÞ ¼ pe/ð jS j � 1Þ] or the same character state [and

then mðpe‚Si‚aÞ ¼ 1 � pe]. In the other variant of likelihood for

phylogenetic trees, the ancestral likelihood, we replace the summa-

tion in Equation (2) with maximization as follows:

LancðSi j T‚pÞ ¼ max
a2S j IðTÞ j

Y

e2EðTÞ
mðpe‚Si‚aÞ: ð3Þ

That is, we seek a unique labeling to internal nodes to maximize the

expression. The ML solution (or solutions) for a specific tree T is the

point (or points) in the edge space p ¼ ½pe�e2EðTÞ that maximizes the

expression L(S j T,p) of Equations (2) and (3), where M¼ (T,p). We

will refer to both these criteria when evaluating the likelihood of a

network.

A natural way of extending this setting to networks is as follows.

The topology of a phylogenetic network is defined as above; how-

ever, in this case since tree edges have transition probabilities, when

adding a reticulation edge between the edges e, e0 2 E we should

mention where along the edges e and e0 we add the two new vertices.

The transition probability of the reticulation edge is always 0,

meaning that there are no substitutions along it (the reason being

that HGT is instantaneous at the scale of evolution). However, each

reticulation edge r¼ (e, e0) has reticulation probability br associated

with it. This probability denotes the probability of a DNA segment

being transferred along that edge. Figure 2 describes a simple phy-

logenetic network.

Let re(T) denote the set of reticulation edges used to obtain tree T
in the network N, and let H(N) denote the set of all reticulation edges

in N. Let

PðTÞ ¼
Y

r2reðTÞ
br

Y

r2HðNÞnreðTÞ
ð1 � brÞ‚

where b denotes the reticulation edge probabilities.

The likelihood of a network is obtained as a function of the

likelihoods of the trees contained in it. Here again we consider

two variants. In the first, the likelihood is the sum of the likelihood

of all the trees of the network, where for each tree T we also

need to multiply the resultant likelihood by P(T). Again, we

can choose between the two tree likelihood functions

described above [(Equations (2) and (3)]. Thus, we get the following

equation:

LallðSi jN‚p‚bÞ ¼
X

T2TðNÞ
PðTÞ · LðSi j T‚pÞ ð4Þ

In the other variant we want to reconstruct the sequence of reticu-

lation events. Thus, we want to find for each site one tree such that

the likelihood of the leaf labels is maximized; we get the following

equation:

LbestðSi jN‚p‚bÞ ¼ max
T2TðNÞ

ðPðTÞ · LðSi j T‚pÞÞ ð5Þ

We stress that since each tree is induced by the network, a likelihood

of a tree can be calculated only when all the parameters of the

network are given. In order to complete the definition of the maxi-

mum likelihood of phylogenetic networks, we add the last criterion

which is the type of the input provided. Therefore, we can define

multiple ML criteria, depending on the three issues (total of 12

variants).

(1) Likelihood criterion for the trees: Is ancestral likelihood or

average likelihood used to assess each tree likelihood in the

network?

(2) Tree criterion: At each site, is the best tree likelihood or the

sum of the likelihoods over all trees taken?

P(Y,C)

P(
A,

e)

P(
e,

i) P(i,f)

P(f,D
)

P(e,X)

P(X,B)

P(f,Y )

A C

i

e f

YX

B D

Fig. 2. Simple example of phylogenetic network under the likelihood setting.

G.Jin et al.
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(3) Input data: Which of the network’s parameters (topology

and/or probabilities) are given? We consider three

possibilities:

(a) The tiny problem: The network topology, transition

probabilities and reticulation probabilities are given.

(b) The small problem: The initial tree and reticulation edges

(i.e. network topology) are given but not the transition or

reticulation probabilities.

(c) Thebigproblem: An initial network (usually a tree) is given

and a set of additional reticulation edges is sought.

3 ALGORITHMS

In the Supplementary Material for this paper (see the Abstract) we

give proofs for the NP-hardness of part of the tiny and small ver-

sions of the problems. We show that the following problems are NP-

hard: tiny best tree ancestral sequences, tiny best tree average

sequences, tiny all trees ancestral sequences, tiny all trees average

sequences and small best tree ancestral sequences. In this section,

we describe algorithms and heuristics for dealing with these NP-

hard problems. The simplest algorithm for the tiny problem is to

decompose the network into all its constituent trees and analyze

each tree separately by either the algorithm of Felsenstein (1981) for

the average case or of Pupko et al. (2000) for the ancestral case. The

complexity of such a naive approach is Oð2rnÞ for each site, where r
is the number of reticulation edges in the network and n is the

number of leaves in the tree.

The component-wise naive algorithm for the tiny problem.

We now describe a more efficient algorithm that takes into

consideration independent components in the network. For a

network N and a node v 2 V (N), Nv denotes the set of nodes

that are reachable from v. Let u,v be two nodes in N. We say

that u and v are unrelated if u =2 Nv and v =2 Nu. In order to

compute likelihood in a bottom-up fashion, we need the following

property to hold: for every two internal nodes u, v, ðNu j NvÞ,
ðNvjNuÞ, or Nu \ Nv ¼ [. Note that this property always

holds for trees, but not necessarily for networks. Indeed, this is

the underlying principle in Felsenstein’s pruning algorithm to

compute likelihood on a tree (Felsenstein, 1981).

DEFINITION 3.1. A biconnected component (bi-component) is a
subgraph induced by a maximal set of vertices W, such that in the
underlying graph, there are two vertex disjoint paths between any
two vertices in W (we assume all the edges are undirected).

A node in a bi-component B is a leaf in B if it has no children in

(the directed graph of) B. Otherwise it is internal in B. Also, a node

is a root in B if it has no ancestor in B. It is easy to see that every bi-

component has at least one leaf and exactly one root. Also, every

two bi-components are internal-vertex-disjoint.

OBSERVATION 3.2. Let B be a bi-component with a root r. Let V (B)
denote the set of vertices of B. Then for every internal node
u 2 VðBÞnfrgthere is an unrelated internal node v 2 VðBÞ s.t. Nu \
Nv 6¼ [ (and by definition Nu 6�Nv). In particular, every leaf in a
bi-component has at least two parents.

The above observation implies that a more efficient algorithm

than the naive algorithm can be devised to handle bi-components

independently.

DEFINITION 3.3. Let N be a network. Then B(N), the bi-component
graph of N is a graph (V(B), E(B)) where V is the set of bi-
components in N and two bi-components B1, B2 are connected
by a (directed) edge in B(N) if 1. There is an edge in N between
v1 2 B1 and v2 2 B2. 2. There is a vertex v 2 VðB1Þ \ VðB2Þ, and v is
a leaf in B1 (and necessarily internal in B2).

We have the following observation.

OBSERVATION 3.4. Let N be a phylogenetic network. Then B(N) is
a tree.

Based on the above observation, a better solution is to decompose

the network into bi-components, run the naive exhaustive algorithm

inside every bi-component and the tree algorithm in the bi-

component. Let r(B) be the number of reticulation edges in a bi-

component B, B* the largest bi-component in N and r* the maximum

of r(B) over all bi-components of N. Then, the above improvement

reduces the complexity of the algorithm to Oð jBðNÞ j 2r
* jB* j Þ.

This improvement can be quite important as the bi-components

can be sparse in a network with few reticulation edges.

Heuristics for the small versions. In this case, we have the network

topology but not the probabilities, which we infer from the data. For

the average likelihood version, we use hill climbing to compute the

optimal parameters for the given topology. For the ancestral like-

lihood version we propose a new Expectation—Maximization (EM)

algorithm. We start with random initial edge lengths. Next we

perform the following two steps until convergence: (1) Find optimal

internal assignments and a tree topology at each site, given the edge

lengths; (2) Find the best edge lengths, given these assignments and

tree topologies. Step (1) can be performed using our exact algorithm

for the tiny problem. Step (2) can be performed in polynomial time

as we now describe. After Step (1) we have labeling for each node in

the tree, and a tree for each site. For an edge e, let Se denote the set of

sites (out of k sites) where the edge e appears in the best tree. Let

h(Se, e) denote the Hamming distance between the two endpoints of

the edge for the sites in Se. In Step (2) we set pe ¼ ½hðSe‚eÞ�= j Se j ,
for tree edges e, and be ¼ ð j Se j Þ=k, for reticulation edges e. It can

be shown that repeating this procedure leads to a local critical point

on the likelihood surface.

Heuristics for the big versions. For accelerating the running time

for the big problems, we use a branch and bound (B&B) heuristic. In

general, the B&B technique is based on the decreasing monotonicity

of the objective function with respect to partial inputs. In other

words, the value of the objective function for a certain input is

not greater than any valid part of that input. The B&B principle

asserts that if the value of the objective function for some partial

input is smaller than some known value on the total input, then

exploring all inputs that extend this partial input can be avoided.

B&B is normally applied to NP-hard problem and can lead to very

efficient running times. In our case, the input is a phylogenetic

network and a set of characters and the objective function is the

likelihood of the network w.r.t. the character set.

Let N ¼ (V,E) be a phylogenetic network. We say that N
0 ¼

ðV 0
‚E

0 Þ is an edge separated subnetwork of N if V
0
jV,

E
0 ¼ fðu‚vÞ 2 E : u‚v 2 V

0 g, and there exists a single edge that

connects a node in V and a node in V0. The following observations

establish an upper bound for the likelihood of a phylogenetic

network.

Maximum likelihood of phylogenetic networks
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OBSERVATION 3.5. If a network N0 is a valid phylogenetic network
and is an edge separated subnetwork of phylogenetic network N,

then P(S jN0) > P(S jN).

For a set S of sequences of length k, we denote by Smn (n� 0,m� k)

the set of these sequences restricted only to the positions n � i � m.

OBSERVATION 3.6. For any phylogenetic network N and set S of
sequences, we have PðSmn jNÞ � PðS jNÞ.

Based on these observations, we propose a two-step heuristic:

(i) optimize the likelihood of sub-networks; if a candidate network

contains an edge separated sub-network with low-likelihood score,

it is not the network with the ML score; (ii) optimize the likelihood

of a network on part of the sites; if a candidate network has low-

likelihood score for these sites, it is not the network with the ML

score.

4 EMPIRICAL PERFORMANCE

We implemented our ML criteria and algorithms and tested them

first on simulated data. Next, using insights from this study we

applied our software on two real biological datasets. The problem

we sought to solve is the big problem in which only the organismal

tree and the input sequences are given and the task is to reconstruct

the network topology and sets of edge probabilities. Specifically, we

investigated the performance of ML with respect to its ability to

infer the correct number and location of HGT events.

Simulation. We used the r8s tool to generate a random birth–

death phylogenetic tree on 20 taxa. The r8s tool generates molecu-

lar clock trees; we deviated the tree from this hypothesis by mul-

tiplying each edge in the tree by a number randomly drawn from an

exponential distribution. The expected evolutionary diameter (long-

est path between any two leaves in the tree) is 0.2. We then aug-

mented this tree with five reticulation edges (simulating HGT

events). Next we used the Seq-gen tool (Rambaut and Grassly,

1997) to evolve DNA sequences on the resulting network: the

first 1500 sites down the organismal tree, and subsequent 500

sites down the tree obtained by applying the five transfer events

to the organismal tree. Both sequence datasets were evolved under

the K2P+g model of evolution, with shape parameter 1 (Kimura,

1980).

The best results we obtained for this type of experiment were

under the ancestral likelihood model. In all our experiments (26) the

best reconstructed edges (the ones that contributed the most to the

network likelihood) were indeed the HGT edges (in the model

network). The sixth edge exhibited a lesser contribution and the

seventh lesser than that. Moreover, all the sites where the HGT

edges were inferred (but not all of them) were from the 1501-th

site to the 2000-th site.

Results on biological data. We analyzed two biological datasets.

In the first we considered the rubisco gene rbcL of 15 plastids,

cyanobacteria and proteobacteria organisms. This is a subset of

the dataset considered by Delwiche and Palmer (1996) (owing to

ML computational intensity, we could not analyze the whole 48-

taxon set) for which multiple HGT events were conjectured by the

authors. The dataset consists of two sequences from each of the a-,

b- and g-proteobacteria groups, two from cyanobacteria, one from

green plastids, one from red plastids, one cyanophora and four from

form II rubisco sequences. For this dataset, we obtained the species

(organismal) tree which was reported in Delwiche and Palmer

(1996) and Boc and Makarenkov (2003). The species tree is

based on 16S rRNA and other evidence. The 532 sites long align-

ment is available from http://www.life.umd.edu/labs/delwiche/

alignments/rbcLgb7-95.distrib.txt.

Delwiche and Palmer (1996) hypothesized the occurrence of

several HGT events of the rubisco genes as opposed to ancient

gene duplication and loss. Our findings, based on the ML criterion

are as follows: (1) The two most significant HGT edges are H1 and

H2 as shown in Figure 3, and they group the form II rubisco

Fig. 3. The species tree of the 15 organisms, as reported by Delwiche and Palmer (1996) and the 6 HGT edges inferred by our heuristic for the big ML problem.

Likelihood criterion ¼ ancestral, and tree criterion ¼ all.

G.Jin et al.
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(Thiobacillus denitrificans II and Hydrogenovibrio II) of the b- and

g-proteobacteria, respectively, together with the form II rubisco

(Rhodobacter capsulatus) of the a-proteobacteria. This result

agrees with the grouping of these three organisms, based on the

form II rubisco, into one clade, as shown in Figure 2 of Delwiche

and Palmer (1996). (2) The third most significant HGT edge is H3

in Figure 3, and it indicates an HGT of the red type form I rubisco

from the a-proteobacteria (Rhodobacter sphaeroides I) to the

b-proteobacteria (Alcaligenes H16 plasmid). This result agrees

with the grouping of all red type form I rubisco genes in one

clade in Figure 2 of Delwiche and Palmer (1996). (3) The fourth

most significant HGT edge is H4 in Figure 3, which completes

the grouping of the form II rubisco genes, along with H1 and

H2, by indicating an HGT of the form II rubisco from R.capsulatus
to Gonyaulax (an a-proteobacteria and plastid, respectively).

This result is also supported by the single clade of all form II

rubisco in Figure 2 of Delwiche and Palmer (1996). (4) The fifth

most significant HGT edge is H5 in Figure 3, which indicates an

HGT of the form I rubisco from the red and brown plastids

(Cyanidium) to the a-proteobacteria (R.sphaeroides I). This HGT

event is in agreement with the grouping of the red type form I

rubisco in Figure 2 of Delwiche and Palmer (1996). (5) The last

HGT edge is H6 in Figure 3 which groups the red and brown plastids

with the a-, b- and g-proteobacteria. Such grouping is supported by

the red type form I rubisco group in Figure 2 of Delwiche and

Palmer, (1996). To summarize, the HGT edges computed by our

heuristic agree with the grouping of the organisms based on

the forms I and II rubisco, as hypothesized by Delwiche and

Palmer (1996).

We also compared our results to the results reported by Boc and

Makarenkov (2003), who used a distance method for discovering

HGT and analyzed a dataset similar to ours. Three of our edges

(H1, H3, H4) appeared in Boc and Makarenkov (2003). Two other

edges (H2, H5) appeared also in Boc and Makarenkov (2003), but in

the opposite direction. One edge, H6, appeared in our results but did

not appear in the results of Boc and Makarenkov (2003). In general,

our results are similar to the result reported by Boc and Makarenkov

(2003) but simpler. Our results included six HGTs, whereas the

solution of Boc and Makarenkov (2003) included eight HGTs.

The second biological dataset includes the ribosomal protein

rpl12e over a group of 14 archaeal organisms, which was mentioned

in the work of Tailliez et al. (2002). We used the organismal tree

described in Tailliez et al. (2002) which was based on both the

concatenation of 57 ribosomal proteins (7175 positions) and the

concatenation of SSU and LSU rRNA (3933 positions) (the two

methods gave identical trees). The sequences were downloaded

from NCBI and were aligned by ClustalW. Tailliez et al. (2002)

claimed that the phelogenetic tree based on these proteins is dif-

ferent from the organismal tree of these archaea. We used our

method for explaining this difference. The results are described

in Figures 4 and 5 and suggest that three HGT events can explain

the difference between the organismal tree and the phylogenetic tree

for the rpl12e proteins.

From the definition of the ML criterion for networks it follows

that adding an edge never decreases the likelihood score. Therefore,

a significant question is when to stop adding edges (stopping rule).

To answer this question, we plotted the improvement in the like-

lihood score as a function of the number of HGT edges added; the

results are shown in Figure 6 for the first dataset and Figure 5 for the

second dataset. The first figure shows that while adding the first five

edges achieves drastic improvements in the likelihood score, adding

the sixth edge results in a much lower improvement, which is

indicated by the slow decrease in the likelihood score. Similarly,

the second figure shows that the first three edges achieve the major

improvements in the likelihood score.

5 CONCLUSIONS AND FUTURE RESEARCH

Phylogenetic networks model evolutionary histories of sets of

organisms in the presence of non-tree-like evolutionary events

such as HGT and hybrid speciation. In this paper, we introduced

a new ML framework for reconstructing and evaluating phylo-

genetic networks. This framework gave rise to an array of compu-

tational problems. We addressed the most basic and fundamental

of these problems such as the complexity of reconstruction,

hardness of the ‘tiny’ variants, devising efficient heuristics and

algorithms, and showing the viability of this criterion. We imple-

mented our methods and tested them on a large set of simulated

data. We also analyzed two biological datasets. On the dataset

of eubacteria and plastids (Delwiche and Palmer, 1996) we

confirmed previous conjecturs made by Delwiche and Palmer

(1996), and on the archaeal dataset of Tailliez et al. (2002) we

explained the discrepancy detected by Tailliez et al. (2002) by

three HGT edges. The empirical analysis carried out here was

aimed to demonstrate the relevance of the ML criterion. However,

since even the simplest models we assumed here are NP-hard, it is

easy to be convinced that even the relatively simple methods we

employed here are fairly involved.

Future research directions include (1) developing more compu-

tationally efficient algorithmic techniques to enable analysis of

large datasets; (2) modeling of dependence among sites (we intend

to investigate HMMs for this purpose); and (3) exploring various

distributions of reticulation edge probabilities. It is clear that there is

a tradeoff between the first and the other two points. Although

using HMMs and more complicated distributions of reticulation

Fig. 4. The species tree of the 14 organisms, as reported by Tailliez et al.

(2002) and the four HGT edges inferred by our heuristic for the big ML

problem. Likelihood criterion ¼ ancestral, and tree criterion ¼ all.
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probabilities will make the model more accurate, it will also dra-

matically increase the running time of the method. Thus, we believe

that simpler probabilistic models, as we described here, are prac-

tically important.
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