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Abstract. Phylogenetic networks model evolutionary histories in the presence of
non-treelike events such as hybrid speciation and horizontal gene transfer. In spite
of their widely acknowledged importance, very little is known about phylogenetic
networks, which have so far been studied mostly for specific datasets.

Even when the evolutionary history of a set of species is non-treelike, individ-
ual genes in these species usually evolve in a treelike fashion. An important ques-
tion, then, is whether a gene tree is “contained” inside a species network. This
information is used to detect the presence of events such as horizontal gene trans-
fer and hybrid speciation. Another question of interest for biologists is whether a
group of taxa forms a clade based on a given phylogeny. This can be efficiently
answered when the phylogeny is a tree simply by inspecting the edges of the tree,
whereas no efficient solution currently exists for the problem when the phylogeny
is a network. In this paper, we give polynomial-time algorithms for answering the
above two questions.

1 Introduction

Phylogenies are the main tool for representing the relationships among biological en-
tities. Their pervasiveness has led biologists, mathematicians, and computer scientists
to design a variety of methods for their reconstruction. Furthermore, extensive studies
have been focused on the performance of these methods under different models and
settings, as well as on the combinatorial and biological properties of trees (e.g., [7, 2]).
However, almost all such methods construct trees, and almost all studies have been
aimed at trees. Yet, biologists have long recognized that trees oversimplify our view of
evolution, since they cannot take into account such events as hybridization, lateral gene
transfer, and recombination. These non-tree events give rise to edges that connect nodes
on different branches of a tree, giving rise to a directed acyclic graph structure that is
usually called a phylogenetic network.

A gene tree is a model of how a gene evolves through duplication, loss, and nu-
cleotide substitution. Gene trees can differ from one another as well as from the species
phylogeny. Such differences arise during the evolutionary process due to events such as
duplication and loss, whereby each genome may end up with multiple copies of a given
gene—but not necessarily the same copies that survive in another genome. Unless the
genome is very well sampled, only a subset (sometimes only one copy, in fact) of the
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gene is used in phylogenetic analyses. As a result, the phylogeny for the gene may not
agree with the species phylogeny, nor with the phylogeny for another gene. Because
the gene copy has a single ancestral copy, barring recombination, the resulting history
is a branching tree. Point mutations can cause some of the copies to be imperfect rep-
resentations of the original, but this process does not compromise the existence of the
(gene) tree. Events such as recombination, hybrid speciation, and lateral gene transfer
break up the genomic history into many small pieces, each of which has a strictly tree-
like pattern of descent [4]. Thus, within a species phylogeny, many tangled gene trees
can be found, one for each nonrecombined locus in the genome. Incongruence among
gene trees is a powerful tool for detecting recombination, hybrid speciation, and other
non-treelike evolutionary events (e.g., see [6]). While testing for incongruence between
two (gene) trees can be done in a straightforward manner, it is not as simple for testing
the incongruence between a tree and a network, since the number of trees “inside” a
network grows exponentially with the number of non-treelike events. In this paper, we
give the first polynomial-time algorithm for solving this problem.

A phylogeny can be viewed as a collection of clusters of taxa (each defined as the
set of leaves in a subtree). Various approaches for reconstructing phylogenies (trees and
networks) have been proposed based on this view (see, e.g., [1, 3]). An interesting bio-
logical question, then, is whether a group of taxa forms a cluster in a given phylogeny.
This question can be answered in a straightforward manner when the phylogeny is a
tree, since each edge in a tree defines a unique cluster. However, the number of clusters
in a phylogenetic network grows exponentially with the number of non-treelike events,
and hence an efficient algorithm for solving the problem is not straightforward. In this
paper, we present the first polynomial-time algorithm for solving this problem.

The rest of the paper is organized as follows. In Section 2 we give a background
on trees, clades and clusters. In Section 3 we briefly describe evolutionary events that
necessitate phylogenetic networks, and describe the graph-theoretic model of phyloge-
netic networks that we use in the paper, along with combinatorial properties that follow
from the model. In Section 4 we introduce the concepts of network decomposition and
dependency graphs. computing these structures forms the core of our algorithms. In
Section 5, we define reduced inheritance profiles and present the main lemma on which
the our algorithms are based. In Section 6 we describe our polynomial-time algorithms
for solving the aforementioned decision problems. We conclude in Section 7 with a
summary of our main results and directions for future research.

2 Background: Phylogenetic Trees

2.1 Notation

In this paper, and unless stated otherwise, all graphs are directed. Given a graph G,
E(G) denotes the set of (directed) edges of G and V (G) denotes the set of nodes of G.
We write (u, v) to denote a directed edge from node u to node v. If e = (u, v) is an
edge from u to v, we call u the tail and v the head of the edge and say that u is a parent
of v. The indegree of a node v, denoted indeg(v), is the number of edges whose head is
v, while the outdegree of v, denoted outdeg(v), is the number of edges whose tail is v.
The degree of a node v is the sum of its indegree and outdegree. In an undirected graph,
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the degree of a node v is the number of edges incident with v. A node u is redundant if
indeg(u)=outdeg(u) = 1. A directed path of length k from u to v in G is a sequence
u0u1 · · ·uk of nodes with u=u0, v=uk, and ∀i, 1 ≤ i ≤ k, (ui−1, ui)∈E(G). Node
v is reachable from u in G, denoted u � v, if there is a directed path in G from u to v.

2.2 Phylogenetic Trees, Bipartitions and Clusters

A phylogenetic tree is a leaf-labeled tree that models the evolution of a set of taxa
(species, genes, languages, placed at the leaves) from their most recent common an-
cestor (placed at the root). The internal nodes of the tree correspond to the speciation
events.

Mathematically, A rooted phylogenetic tree is a rooted tree without redundant nodes
and whose leaves are labelled distinctively. An unrooted phylogenetic tree is a rooted
phylogenetic tree with the root suppressed. Every edge e in an unrooted leaf-labeled
tree T defines a bipartition (or, split) π(e) on the leaves (induced by the deletion of e),
so that we can define the set Π(T ) = {π(e): e ∈ E(T )}. Every edge e in a rooted
leaf-labeled tree T defines a cluster c(e) of leaves (those leaves that are reachable from
the root through e), so that we can define the set C(T ) = {c(e): e ∈ E(T )}. A clade of
a rooted tree T is the entire subtree rooted at a node of T ; the set of all leaves in a clade
correspond to a cluster of T .

There is a many-to-one relationship between rooted and unrooted phylogenetic
trees: there are many ways to root an unrooted phylogenetic tree. Based on this we
also see an association between clusters of a rooted tree T and bipartitions of the un-
rooted version of T : each cluster of a rooted tree T equals one of the two sets in the
bipartition induced by an edge e in the unrooted version of T .

3 Phylogenetic Networks

3.1 Non-tree Evolutionary Events

We now describe two types of evolutionary events that give rise to network (as op-
posed to tree) topologies: hybridization and lateral gene transfer. In hybridization, two
lineages recombine to create a new species, as symbolized in Figure 1(a). We can dis-
tinguish between diploid hybridization, in which the new species inherits one of the
two homologs for each chromosome from each of its two parents—so that the new
species has the same number of chromosomes as its parents, and polyploid hybridiza-
tion, in which the new species inherits the two homologs of each chromosome from
both parents—so that the new species has the sum of the numbers of chromosomes of
its parents. Prior to hybridization, each site on each homolog has evolved in a tree-like
fashion, although, due to meiotic recombination, different strings of sites may have dif-
ferent histories. Thus, each site in the homologs of the parents of the hybrid evolved in
a tree-like fashion on one of the trees contained inside (or induced by) the network rep-
resenting the hybridization event, as illustrated in Figures 1(b) and 1(c). In lateral gene
transfer, genetic material is transferred from one lineage to another without resulting in
the production of a new lineage, as symbolized in Figure 1(d). In an evolutionary sce-
nario involving lateral transfer, certain sites are inherited through lateral transfer from
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Fig. 1. Hybrid speciation: the network in (a) and its two induced trees in (b) and (c). Horizontal
transfer: the network in (d) and its two induced trees in (e) and (f).

another species, as in Figure 1(e), while all others are inherited from the parent, as in
Figure 1(f).

When the evolutionary history of a set of taxa involves processes such as hybridiza-
tion or lateral gene transfer, trees can no longer represent the evolutionary relationship;
instead, we turn to rooted directed acyclic graphs (rooted DAGs).

3.2 Phylogenetic Networks: Model and Properties

In this paper, we adopt the general model of (reduced) phylogenetic networks, as de-
scribed in [5]).

Definition 1. A phylogenetic network is a connected directed acyclic graph N =
(V,E), where V can be partitioned into {r} ∪ Tr(N) ∪Nt(N) ∪ L(N), where:

1. Node r is the root; it has indegree 0.
2. Set Tr(N) is the set of tree nodes; each node u in Tr(N) has indegree 1 and

outdegree> 1.
3. Set Nt(N) is the set of network nodes; each node v in Nt(N) has indegree 2 and

outdegree 1.
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4. Set L(N) is the set of leaf nodes (taxa); each node x in L(N) has indegree 1
and outdegree 0. Each node x in L(N) is labeled uniquely by an integer i, where
1 ≤ i ≤ |L(N)|.

Figures 1(a) and 1(d) give two examples of phylogenetic networks. Given a network
N , we classify its edges as tree edges and network edges. An edge e = (u, v) is a tree
edge if v is a tree node or a leaf; otherwise, it is a network edge. Biologically, the tree
nodes correspond to regular speciation events in the evolutionary history, whereas net-
work nodes correspond to reticulation events (e.g., hybridization, lateral gene transfer,
recombination, etc.).

We say that networkN is binary if the root and all tree nodes ofN have outdegree 2.
In this paper, and unless noted otherwise, all networks are binary. Further, we assume
that if u is a tree node and (u, v) and (u,w) are the two edges incident from u, then at
least one of the two nodes v and w is a tree node.

A forced contraction is an operation on a graph in which we delete a redundant
node and replace the two edges incident to it by a single edge. An augmentation is an
operation on a graph in which an edge (u, v) is replaced by two edges (u, x) and (x, v),
where x is a new node. A DAG N is a pseudo-network if a networkN ′ can be obtained
by applying a sequence of forced contraction operations to N (alternately, if N can
be obtained by applying a sequence of augmentation operations to a network N ′). We
generalize the clade concept to networks as follows. Given a networkN , we say that the
DAG N ′, rooted at node x, is a network clade of N , if there exists an edge e = (u, x)
in N whose removal disconnectsN , thus creating two components, one of which is N ′

(rooted at x). If network clade N ′ does not contain network nodes, i.e., N ′ is a tree, we
refer to N ′ simply as a clade. Given a network N , and a clade N ′, we say that N ′ is
maximal if N does not contain any clade N ′′ such that N ′ ⊂ N ′′.

A phylogenetic network N = (V,E) defines a partial order on the set V of nodes,
and based on this partial order, we assign times to the nodes of N ; t(u) denotes the
time associated with node u. If there is a directed path p from node u to node v, such
that p contains at least one tree edge, then t(u) < t(v). If e = (u, v) is a network edge,
then t(u) = t(v) (since reticulation events occur instantaneously). Further, if there is a
directed path from node u to node v, u �= v, we say that u is above v and that v is below
u, both denoted by u > v. We say that node u in N is a lowest network node if (1) u is
a network node, and (2) for any network node v, v �= u, we have u �� v.

Lemma 1. Let N be a network, u be a lowest network node, and e = (u, v) be the
edge incident from u. Then, the subgraph N ′ ⊂ N rooted at v is a maximal clade.

Proof. By definition of lowest network node, all nodes below u are either tree nodes or
leaves; hence, N ′ is a clade. Assume N ′′ is also a clade, and that N ′ ⊂ N ′′. Then, N ′′

contains node u, which is a network node – a contradiction. Therefore,N ′ is a maximal
clade.

Given a networkN and two nodes u and v inN , we say that u and v cannot co-exist
in time if there is a directed path p = 〈u0, u1, . . . , uk〉 inN , where u0 = u and uk = v,
and p satisfies three properties: (1) p contains at least one tree edge, (2) for any tree
edge e on p, we have e = (ui, ui+1) (may not be (ui+1, ui)), 0 ≤ i ≤ k − 1, and (3)
the orientation of a network edge on p is irrelevant.
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Since events such as hybridization and lateral gene transfer occur between two lin-
eages (nodes in the network) that co-exist in time, a phylogenetic network N must
satisfy the synchronization property, which states that if two nodes x and y cannot co-
exist in time, then there do not exist two edges e = (x, v) and e′ = (y, v) in N . If a
network N violates the synchronization property (which may happen due to missing
taxa in the phylogenetic analysis), then N can be augmented to remedy this violation,
as we show in the following theorem.

Theorem 1. For any phylogenetic network N , there exists an augmentation of N into
a pseudo-networkN ′ that satisfies the synchronization property.

Proof. If N satisfies the synchronization property, then N ′ = N . Assume N does
not satisfy the synchronization property, and let e1 = (x1, v) and e2 = (x2, v) be two
network edges such that x1 � x2. LetN ′ be the network obtained fromN by replacing
edge e1 by two new edges e′1 = (x1, y) and e′′1 = (y, v), where y is a new node. Now,
the network node v has the two parents y and x2. It is clear that x2 �� y, since the only
way to reach y is through x1, and x2 �� x1 (otherwise, N would be cyclic). It is also
clear that y �� x2, since if y reaches x2, it has to be via a path that passes through v,
and since x2 reaches v, N would be cyclic. We apply the same process to every pair of
edges that violates the synchronization property.

We write N |L′ , where L′ ⊂ L(N), to denote the subgraph N ′ obtained from N
by removing all leaves not in L′, and then applying forced contraction operations and
removal of nodes of outdegree 0 (other than the leaves in L′). We now describe some
properties of phylogenetic networks.

Proposition 1. Let N = (V,E) be a phylogenetic network.

1. outdeg(r) +
∑

s∈Tr(N)(outdeg(s) − 1) = |Nt(N)| + |L(N)|.
2. For every node v ∈ V , r � v.
3. For every node v ∈ V , there exists at least one leaf l below v.
4. (Taxon sampling) N |L′ is a phylogenetic network, for any L′ ⊂ L(N).

Proof.

1. By the observation
∑

v∈V outdeg(v) =
∑
v∈V indeg(v).

2. Let V ′ be the set of all nodes that cannot be reached from r. Let x be a maximal
element (in terms of the partial order induced byN on V ) in V ′; then indeg(x) = 0
(otherwise N would be cyclic). However, the only node with indegree 0 is r – a
contradiction.

3. Let R(v) = {u ∈ V : v > u}. If R(v) = ∅, then outdeg(v) = 0, i.e., v is a leaf. If
R(v) �= ∅, and since N is acyclic (and finite), then there exists at least one node x
in R(v) with outdegree 0. It follows from Definition 1 that x is a leaf.

4. Straightforward.

In this paper, we focus on binary networks, but the results extend to general net-
works in a straightforward manner.
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3.3 Networks and Trees

There is a fundamental connection between (species) networks and (gene) trees. A gene
tree is a model of how a gene evolves through duplication, loss, and nucleotide substi-
tution. Gene trees can differ from one another as well as from the species phylogeny.
Such differences arise during the evolutionary process due to events such as duplication
and loss, whereby each genome may end up with multiple copies of a given gene—but
not necessarily the same copies that survive in another genome. Unless the genome is
very well sampled, only a subset (sometimes only one copy, in fact) of the gene is used
in phylogenetic analyses. As a result, the phylogeny for the gene may not agree with
the species phylogeny, nor with the phylogeny for another gene. Because the gene copy
has a single ancestral copy, barring recombination, the resulting history is a branching
tree. Point mutations can cause some of the copies to be imperfect representations of the
original, but this process does not compromise the existence of the (gene) tree. Events
such as recombination, hybridization, and lateral gene transfer break up the genomic
history into many small pieces, each of which has a strictly treelike pattern of descent
[4]. Thus, within a species phylogeny, many tangled gene trees can be found, one for
each nonrecombined locus in the genome. Yet, in the presence of these processes, the
evolutionary history of the species fails to be modeled as a tree; in this case, networks
are used to model the species phylogeny. We say that a (species) network “induces” (or,
contains) a (gene) tree or alternately, a (gene) tree is induced by (or, contained inside) a
(species) network. We formalize this concept as follows.

Let N be a network with p network nodes h1, h2, . . . , hp. Further, assume that the
two edges incident into hi are ei1 and ei2 . An inheritance profile, IP , for N is a set
of size p and which contains exactly one of the two edges ei1 and ei2 for each network
nodes hi. A rooted tree T is induced by (or, contained in) a networkN if there exists an
inheritance profile IP such that T can be obtained fromN as follows: for network node
hi, if ei1 ∈ IP , remove edge ei2 ; otherwise, remove edge ei1 . (and then apply forced
contraction operations to the resultant graph). Biologically, the evolutionary history of
a gene within the species network corresponds to a tree T induced by N . Associated
with this tree is an inheritance profile IP that decides how to obtain T from N ; in this
case, we say that IP is a valid inheritance profile that induces T . A networkN induces
(or, contains) a cluster C, C ⊆ L(N), if there exists a tree T such that N induces T
and C is a cluster of T .

Proposition 2. Let N be a nonempty network. Then N induces at least one phyloge-
netic tree.

Proof. We show the proposition by induction on the number of leaves in N . The base
case (one leaf) is trivial. Assume the hypothesis is true for |L(N)| = n, and consider
the case where |L(N)| = n + 1. Let Nn be the DAG obtained by restricting N to the
first n leaves. By the induction hypothesis, there exists a tree Tn that is induced by
Nn. By Proposition 1, there exists a path Pn+1 connecting the root and leaf n+ 1, and
there exists a node v that is the lowest node in both Pn+1 and the embedding of Tn in
Nn+1. T is obtained by joining the edges and nodes below v in Pn+1 and Tn. Since
T is connected by construction, if T is not a tree, then there exists a (not necessarily
oriented) cycle in T . This contradicts the choice of v as the lowest node in Pn+1.
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As mentioned before, deciding whether a cluster or a tree are induced by a given
network plays a significant role in solving major problems such as network recon-
struction, gene tree and species network relationships, exploring the network space in
hill-climbing heuristics for solving hard optimization network reconstruction problems,
measuring distances and error rates between networks in simulation studies, and many
other tasks. We now formalize the two decision problems.

Problem 1. (THE NETWORK-TREE CONTAINMENT PROBLEM)

Input: A phylogenetic network N and a tree T .
Question: Does N contain T ?

Problem 2. (THE NETWORK-CLUSTER CONTAINMENT PROBLEM)

Input: A phylogenetic network N and a cluster C.
Question: Does N contain C?

A trivial approach for solving the Network-Cluster Containment Problem is to find
“the” lowest common ancestor, x, of C in the network N , and test whether the cluster
is contained in the network clade rooted at x. This approach may fail for at least two
reasons: (1) xmay not be unique in a network, and (2) the network clade rooted at xmay
contain many of the network nodes of N , in which case the search for a solution would
take time that is exponential in the number of network nodes, and hence, probably the
network size.

In Section 6 we show that these two problems can be decided in polynomial time.
In order to obtain these results, we first introduce the concept of network decomposition
which forms the basis for our algorithms.

4 Network Decomposition

Before we give the technical details of our algorithms, we describe the network repre-
sentation we use, which is vital for achieving the running times of the algorithms in the
next sections. We assume that a network N is represented using an n × n adjacency
matrix MN , where n is the number of nodes in the network. We have MN [u, v] = 1
if there is an edge (u, v) ∈ E(N), and MN [u, v] = 0 otherwise. Using this represen-
tation, a forced contraction operation takes O(1) time, and an edge deletion takes O(1)
time, as well.

4.1 Preprocessing Networks

An SH-loop (speciation-hybridization) is a cycle that contains only network edges, and
that consists of two paths p1 and p2, such that p1 and p2 starting from the same tree
node v0, pass through two sets of network nodes, and end at the same network node v1.
Let e1 = (v0, x) and e2 = (v0, y) be the two network edges incident from v0. We break
the SH-loop by removing either e1 or e2, and applying forced contraction operations to
all redundant nodes. We repeat the same process until N is SH-loop-free, i.e., N does
not contain any SH-loops.
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Preprocessing of a network N can be achieved in polynomial time. To prepro-
cess a network, cycles of network edges in the network need to be detected. A depth-
first search achieves this goal. There are at most min{|Tr(N)|, |Nt(N)|} such cycles.
Breaking each cycle by removing an edge, followed by a forced contraction opera-
tion, takes O(1). Therefore, the overall running time of the preprocessing is O(|V (N)|
(|V (N)| + |E(N)|)) = O(|V (N)|2) = O(|E(N)|2) (since in binary networks
|V (N)| = Θ(|E(N)|)). The following result shows that preprocessing a network N
does not change the set of trees induced by N .

Proposition 3. Let N be a phylogenetic network, and let N ′ be the network obtained
after the preprocessing. Then, T (N) = T (N ′).

Proof. Since N ′ is a subgraph of N , we only need to show that each tree T that is
induced by N is also induced by N ′. As each step in the preprocessing removes one
edge from N , it suffices to show this is true if N ′ and N differ by one edge. Consider
an inheritance profile IP that induces T ; if each edge in IP is in N ′, we are done.
Otherwise the edge is in an SH-loop of N , pointing from a tree node v0 to a network
node x (x may be suppressed in N ′). Let y be the other node immediately below v0
in the SH-loop, and let v3 be the lowest network node where the two paths of the SH-
loop meet. Let p1 and p2 be the two paths in the SH-loop containing edges (v0, x) and
(v0, y), respectively. Let z and w be the vertices immediately above v3 in p1 and p2,
respectively. Notice that since p1 and p2 consist of network nodes only (except for v0),
the leaf sets below x, y, and v3 are identical; call it L. Let L′ be the subset of leaves
such that the path to root from each leaf in L′ passes through (v0, x) (it also must pass
through v3); such path necessarily passes through (x, y); we only need to consider the
case when L′ is nonempty. Then IP contains every edge in p1, and no leaf in L′ reaches
the root through nodes only in p2 in T . Hence we can add all edges in p2 and remove
conflicting edges in IP , as they do not lead to leaves from the root. The result is an
inheritance profile for N ′ that also induces T .

4.2 Maximal Clades and Connections

Unless noted otherwise, all networks are SH-loop free. Given a phylogenetic network
N , we seek to decomposeN into maximal-size clades and disjoint subgraphs ofN that
connect those clades. To formalize this, we first define some concepts.

Given a node x in network N , we say that a network node y (y �= x) in N is x-
convergent if any directed path from y to a leaf ofN passes through x. Given a maximal
clade A of N , and the root a of A, we say that subgraph J of N is the connection of
A if J is the subgraph obtained by restricting N to all a-convergent nodes and their
incident edges.

Lemma 2. Let A and J be a clade and its connection, respectively, in a network N .
Then, when reversing the orientation of its edges, J has a rooted tree topology, where
each leaf is a tree node in N and each internal node is a network node in N . Further,
the root of J is a lowest network node.

Proof. Let a be the root of clade A. Assume J has a node v that is a tree node in N .
By Proposition 1 and the definitions of J and a, there does not exist a tree node v′ that
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is reachable from v but not from a; hence, there exists a directed path from v to a and
that consists of network nodes only. Moreover, the path is unique. If there exist two
such paths from v to a then the two paths form an SH-loop. Consider the union of all
such paths to a from speciation nodes in J ; since those paths are unique, it follows that,
when the orientation of the edges in J is reversed, J forms a rooted tree, and the leaves
of J are the set of nodes in J that are tree nodes in N . Other properties follow directly.

4.3 Computing the Decomposition

We now define the concept of T-decomposition (tree decomposition) of a network.

Definition 2. A T-decomposition of a network N is an ordered set of pairs D =
{(Ai, Ji)}1≤i≤m, where Ai and Ji are a maximal clade and its connection, respec-
tively, in Ni (Ni is obtained by removing the subgraphs Ai−1 and Ji−1 from Ni−1,
except for the leaves of Ji−1, i.e., the tree nodes, and applying forced contraction oper-
ations to the resultant graph; for the base case, N1 = N ); m is the cardinality of the
decomposition.

Figure 2(b) shows a T-decomposition of the network in Figure 2(a). Before comput-
ing a T-decomposition of a network, the network has to be preprocessed as described in
Section 4.1.

Definition 2 leads to an algorithm naturally. To compute Ai in Ni, we find a max-
imal clade, which is rooted at the tree node immediately below a lowest network node
(based on Lemma 1). To compute Ji, we use Lemma 2: reverse the orientation of all
edges in Ni, do a depth-first search starting from the root of Ai until tree nodes are
encountered. Ji is the search tree together with the tree nodes immediately above (and
edges connecting them to Ji). This algorithm can be achieved in O(|Nt(N)||V (N)|)
time. To find (Ai, Ji) in Ni, we first find a lowest network node v. To find v, we rank
the network nodes (a node has a lower rank if it is closer to the root) using topolog-
ical sort (O(|V (N)| + |E(N)|) running time). We keep a doubly-linked list to allow
constant running time update whenever a network node is deleted from the network,
so finding a lowest network node can be achieved at no extra cost. The maximal clade
Ai is the clade rooted at the node immediately below v. To find the connection Ji, we
start from v and do a depth-first search with all edges in Ni reversed, and stop when-
ever a tree node is encountered. We then remove Ai and Ji from Ni, apply forced
contraction to all redundant nodes encountered in the DFS step for finding Ji. Notice
that in the two steps for finding Ai and Ji, we visit each edge at most once in com-
ponent Ai and Ji. These edges are removed from Ni, and the tree nodes in Ji are
suppressed inNi (which takes constant time per node). The overall running time is thus
O(m(|V (N)| + |E(N)|)) = O(|Nt(N)||V (N)|).

We now show some properties of the T-decomposition.

Proposition 4. Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a network N .

1. Nm is a phylogenetic tree.
2. Each edge in N belongs to exactly one component in the decomposition.
3. Each network node belongs to exactly one connection in the decomposition.
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Fig. 2. (a) A phylogenetic network N . (b) A T-decomposition D of N . (c) The dependency
digraph KN,D .
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4. {L(Ai)}1≤i≤m, where L(Ai) denotes the leaf set ofAi, forms a partition of L(N).
5. If N is binary, then Ni is binary for all 1 ≤ i ≤ m.

Proof.

1. By definition Nm does not have network nodes.
2. Observe that by the algorithm, E(Ni+1), E(Ai), E(Ji) and the edge connecting
Ai and Ji, form a partition of E(Ni), 1 ≤ i ≤ m− 1.

3. At each step of the decomposition algorithm, we remove all nodes in the computed
connection;Nm does not have network nodes.

4. First notice that L(Ai) is a subset of L(Ni). Assume L(Ni) − L(N) �= ∅. Then
there exists a node v with outdegree 0 in L(Ni) but not in L(N), which means
either v ∈ Tr(N) or v ∈ Nt(N). If v ∈ Nt(N) then all nodes immediately
above v except one are in Ai or Ji, which is not possible since v cannot be lower
than the lowest network node determining Ai. If v ∈ Tr(N), then v ∈ L(Ji),
and at least two nodes in Ji are immediately below v, contradicting the fact that
N is SH-loop free. Therefore, L(Ai) ⊆ L(Ni) ⊆ L(N). Since Ai is nonempty, it
has a lowest node, which must be a leaf in L(Ni). Finally, notice that L(Ni+1) =
L(Ni) − L(Ai), 1 ≤ i ≤ m− 1.

5. Straightforward.

Let (u, v) be a terminal edge (i.e., and edge incident with a leaf) that belongs to con-
nection Ji; v is a tree node in N . If N is binary, then for the three edges incident to
v, two belong to the same component, because v is suppressed in the i’th step in the
decomposition algorithm. We define ι(u, v) to be the index of this component. It is
straightforward to show that ι(u, v) > i.

Finally, we show that exactly one terminal edge from each component in a T-
decomposition is used to induce a tree T .

Lemma 3. If T is a tree induced by a network N , and D is a T-decomposition of N ,
then exactly one terminal edge from each connection in D is used to induce that tree.

Proof. Assume the two terminal edges e1 = (x1, y1) and e2 = (x2, y2) from connec-
tion Ji are needed to induce tree T . Further, assume vi is the root of Ai, and Si is the
leaf set of Ai. Assume, as well, that ui is the network node such that (ui, vi) is an edge
in N . Notice that each of the two edges e1 and e2 were either a single edge or a path of
edges in N .

Exactly one of the two edges, say e1, reaches Si in T , whereas the other edge, e2,
reaches a set S′ of leaves, where Si ∩ S′ = ∅; otherwise, the underlying undirected
graph of T contains a cycle – a contradiction.

It follows that the path p from x2 to ui contains a node z, dividing p into two paths
p1 (from x2 to z) and p2 (from z to ui), and such that there is a terminal edge (z, w) in
some connection Jj , i �= j, where the set S′ of leaves is under w. The node w must be
a network node.

Now consider all possible nodes on the path p2 (between node z and node ui, exclu-
sive). If there were no such nodes, and since ui is a network node, it follows that node
z has two network node children (w and ui) – a contradiction to the assumption that N
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does not have a tree node whose two children network nodes (notice that node z cannot
be a network node, since by definition, a network node has outdegree 1).

Now, assume there were nodes on the path p2 from z to ui, and let s be such a
node. If s were a tree node, then there exists at least one leaf t in N that is reachable
from s through paths that do not contain any network nodes (otherwise, the subnetwork
rooted at s contains a tree node whose two children are also network nodes, which
is a contradiction). In this case, the edges on the path from x2 to s cannot be in the
connection Ji (those edges would be in maximal clade Am) – a contradiction to the
assumption that edge e2 is a terminal edge in connection Ji. Therefore, all nodes on the
path p2 from z to ui are network nodes, and hence tree node z has two children that are
network nodes – a contradiction.

Therefore, exactly one terminal edge from each connection is used to induce a tree
T in a network N .

4.4 Dependency Graphs

Given a network N and its T-decomposition D, we define the dependency digraph
KN,D to facilitate our algorithm design.

Definition 3. Given a network N and its T-decomposition D = {(Ai, Ji)}1≤i≤m, the
dependency graph is a directed multigraphKN,D, where node vi inKN,D corresponds
to the pair (Ai, Ji) in D, and edge (vi, vj) (i > j) in KN,D corresponds to a terminal
edge connecting Jj and Ji in N .

Figure 2(c) shows a dependency graph of the network and T-decomposition given
in Figures 2(a) and 2(b). In other words, KN,D is the graph resulting from replacing
each component (Ai, Ji) inD by a single node vi, and hence,KN,D is necessarily con-
nected. IfKN,D had a cycle, thenN would be cyclic. Therefore, we have the following
result.

Proposition 5. The dependency graph KN,D is connected and acyclic. Moreover,
(vi, vj) is an edge in KN,D only if i > j.

At the end of the decomposition process, we keep a matrix that shows which component
each edge belongs to. So querying which component an edge (u, v) belongs to, as well
as computing the value of ι(u, v), take O(1) time. Thus, computing the dependency
graph KN,D takes O(m|E(N)|) = O(|Nt(N)||V (N)|) time. Further, in KN,D, we
keep track of the correspondence between edges of N and edges of KN,D.

5 Reduced Inheritance Profiles and the Cluster Lemma

Given a T-decomposition D of cardinality m, a reduced inheritance profile is a set of
size m that contains exactly one terminal edge per connection in the decomposition.
We only keep the terminal edges because all inheritance profiles having the same set of
terminal edges necessarily induce the same tree. A reduced inheritance profile extends
into an inheritance profile in a straightforward manner, as no edges in the reduced in-
heritance profile are incident with the same network node. We say that a reduced inheri-
tance profile is valid if it induces a tree. The following results show the correspondence
between inheritance profiles and reduced inheritance profiles.
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Proposition 6. Let D be a T-decomposition of a network N . Then,

1. For each valid reduced inheritance profile IP there exists a valid inheritance profile
IP ′ that contains IP and induces the same tree.

2. For each valid inheritance profile IP ′ there exists a unique valid reduced inheri-
tance profile IP that induces the same tree.

Proof.

1. To compute the inheritance profile IP ′, for each connection Ji we take the unique
path from the terminal edge ei to the root of Ji; for each network node vi in Ji,
we choose the edge on the path as the value of xi in the inheritance profile. For
other nodes we make choices arbitrarily. Since no leaf can be reached from the root
through nodes not on the path, choosing different edges incident with these nodes
in the profile do not affect the tree topology.

2. Given a valid inheritance profile IP ′, for each connectionJ in theD there is exactly
one path connecting a terminal edge in J and the root of J . We retain this edge and
drop all other terminal edges in J ∩ IP ′. We obtain IP by repeating the same
process for all connections.

The dependency graph can be seen as a compact representation, mainly for reduced
inheritance profiles.

Lemma 4. Let D be a T-decomposition of a network N , KN,D be the dependency
graph, and IP be a valid reduced inheritance profile. Then, KN,D, restricted to the
edges in IP , forms a tree.

We are now in position to show the correlation between clusters and a T-decomposition
of a network – a result that forms the basis for our algorithms.

Lemma 5. (Cluster Lemma) Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a
network N . Each cluster C induced by N can be written as C = ∪jCj , where each Cj
is an element of {L(Ai) : 1 ≤ i ≤ m}, except for at most one of the Cj ’s, which may
be a proper subset of an element of {L(Ai) : 1 ≤ i ≤ m}.

Proof. The lemma is trivially true for |C| = 1. Assume |C| > 1, and let T be a phylo-
genetic tree that contains C. Let IP be a reduced inheritance profile that induces T in
N . Construct the tree T ′ in the dependency graph according to Lemma 4. Let v in N
be a lowest common ancestor of all leaves in C. Node v must be a tree node (if it were
a network node, then the node below v would also be a common ancestor, contradict-
ing the fact that v is a lowest common ancestor). Let Ai1 , Ai2 , . . . , Aik be k maximal
clades in D and such that each of them has nonempty intersection with C. Let eij be
the terminal edge in Jij that is an element of IP . There are two cases: (1) v is in a
maximal clade Al but not in any connection in D. Let L(v) be the cluster in Al below
v; or (2) v is in a connection Jq in D. Then there is a terminal edge (u, v) ∈ Jq . Let
l = ι(u, v), and let L(v) be the cluster in Al below v. In both cases, L(v) is nonempty,
and if L(v) �= L(Al), then L(v) is the Cj that is a proper subset of an element of
{L(Ai) : 1 ≤ i ≤ m}. Furthermore, for any Aij , ij �= l, 1 ≤ j ≤ k, ij �= m, any path
from v to a leaf in L(Aij ) passes through eij by Lemma 6; thus, L(Aij ) ⊆ C. Any leaf
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in L(Aij ) \ L(Ax) can be reached from v through at least one terminal edge in IP , so
by Lemma 5, l = max{i1, . . . , ik}.

Corollary 1. Let D = {(Ai, Ji)}1≤i≤m be a T-decomposition of a network N , IP be
a reduced inheritance profile, and C be a cluster. Then, when restricted to the nodes
whose corresponding maximal clades have nonempty intersection with C and to the
edges in IP , the dependency graph KN,D forms a tree. Further, the root of that tree
has the highest index.

Proof. Using the collapsing argument in the proof of Lemma 4, and Proposition 5.

Corollary 1 gives an algorithm for computing the component that contains the node
which “determines” a cluster C: compute the corresponding subtree in the dependency
graph and return the component corresponding to the root. If one of theCj’s in the Clus-
ter Lemma is a proper subset of an element in {L(Ai) : 1 ≤ i ≤ m}, the component
that contains that Cj must be the root, based on the proof of the Cluster Lemma.

6 Polynomial-Time Algorithms for the Decision Problems

6.1 Deciding the Network-Cluster Containment Problem

We are finally in a position to describe a polynomial-time algorithm for deciding the
Network-Cluster Containment Problem. The algorithm is given in Figure 3. Let D =
{Ai, Ji}1≤i≤m be a T-decomposition of a network N , and let C ⊂ L(N) be a cluster.
We define the set ψ(C) = {i : 1 ≤ i ≤ m and L(Ai) ⊆ C}. The basic idea is to
compute a set EC of edges that are incompatible with C, i.e., edges that cannot co-exist
with C in the same tree induced by N .

Algorithm TestCinN(N ,C)

1. Compute a T-decomposition D = ((A1, J1), . . . , (Am, Jm = ∅)).
2. Test if C can be decomposed into the following form:

S
i∈ψ(C) L(Ai)∪L′, where L′ =

∅ or L′ ⊂ L(Al) for some l. If not, return NO. If L′ = ∅ then let l = maxi∈ψ(C) i.
3. Partition V = V (KN,D) into two sets: VC = {vi|i ∈ ψ(C)} and VC = V − VC .

Compute the set EC = {eij = (vi, vj)|eij ∈ E(KN,D), vi ∈ VC , vj ∈ VC , j �= l}.
4. If L′ �= ∅, test if L′ is a cluster of Al. If not, return NO; otherwise:

(a) Let v′ be the root of the clade whose leaf set is L′.
(b) For each terminal edge (u, v) in Ai, for some i ∈ ψ(C) and ι(u, v) = l, (edge

(u, v) connects the i’th component to the l’th component), add (u, v) to EC if u is
not a descendant of v′ in Ni.

5. Remove all terminal edges in N and that correspond to edges in EC (and apply forced
contraction operations); let the result be NC . If NC is connected, return YES. Other-
wise, return NO.

Fig. 3. Algorithm TestCinN for deciding the NETWORK-CLUSTER CONTAINMENT PROBLEM
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Theorem 2. Algorithm TestCinN(N ,C) decides the Network-Cluster Containment
Problem in O(|V (N)|2) time.

Proof. We first show the correctness of the algorithm. Step 3 in the algorithm is well
defined: if (vi, vj) ∈ E(N) then i > j by Proposition 5.

Assume NC is connected. It is easy to show NC is still a network (note that we
only remove terminal edges). By Proposition 2, NC induces a tree T ′; note that N also
induces T ′. There exists a reduced inheritance profile IP that induces T ′ in NC . Let e
be the terminal edge in IP ∩E(Jl). We now show T ′ containsC. For any terminal edge
e′, assume it is from component i. Assume i ∈ ψ(C). If e′ ∈ IP , then e′ is below e in
T ′, otherwise e′ is in EC . So the cluster below e in T contains each L(Ai), i ∈ ψ(C).
Now assume i �∈ ψ(C) and i �= l. If e′ ∈ IP , then ι(e′) /∈ ψ(C) ∪ {l}. Therefore⋃
i∈ψ(C) L(Ai) ⊆ C, and for each i �∈ ψ(C)∪ {l}, L(Ai)∩C = ∅. Finally, if L′ is not

empty, notice that for any terminal edge e′ from component i, i ∈ ψ(C), if e′ ∈ IP ,
then e′ is lower than v′ in T ′. Therefore the cluster determined by v′ in T ′ is exactly⋃
i∈ψ(C) L(Ai) ∪ L′.

Now, assume N induces tree T that contains cluster C; we show that NC is con-
nected. Let G = KN,D be the dependency graph, and let GC be the graph obtained
by removing edges in EC from KN,D. Let IP be a reduced inheritance profile that
induces T . If none of the edges in T is in EC then GC (and hence NC) is connected.
To see this is true, assume otherwise; then there exists (u, v) ∈ IP ∩ EC . Either (u, v)
is an edge in step 3 or step 4(b). The first case contradicts Corollary 1, since the edge
connects some vertex vi, i ∈ ψ in GC to a vertex vj above vl. In the second case,
the cluster determined by u in Al properly contains L′. If (u, v) ∈ Ji (in which case
L(Ai) ⊆ C), then for any vertex below u in T ′, its corresponding cluster does not
contain L(Ai).

We now analyze the running time of the algorithm. (Recall thatN is binary.) Step 1
takes O(|Nt(N)||V (N)|) time. Steps 2 and 3 take O(|L(N)|) time if we keep track of
which component each leaf inL(N) belongs to, when we computeD. In step 4, first no-
tice the number of terminal edges is bounded by 2|Nt(N)|; for each terminal edge, test-
ing its membership in EC takes constant time. In Step 5, testing if L′ is a cluster in Ai
takesO(|L(Ai)|) = O(|L(N)|) time by doing a depth-first search; we can also find v in
5(a) at the same time. Testing for each (u, v) if it should be added to EC takes constant
time, and there are O(|Nt(N)|) of them. Finally, in Step 6, removingEC fromN takes
O(|EC |) = O(|Nt(N)|) time; testing the connectedness of NC can be achieved by a
depth-first search. The overall running time isO(|Nt(N)||V (N)|)=O(|V (N)|2). If the
T-decomposition is given, the running time is O(|V (N)| + |E(N)|) = O(|V (N)|).

Based on the proof of Theorem 2, we have the following result.

Corollary 2. Given any network N , a phylogenetic tree T , and a cluster C in T , N
induces T if and only if NC induces T .

Proof. Let IP be an inheritance profile that induces T . Notice that no edge of IP is in
EC . Since IP induces T in N , it also induces T in NC .



98 L. Nakhleh and L.-S. Wang

6.2 Deciding the Network-Tree Containment Problem

Using algorithm TestCinN(N ,C), Figure 4 describes our polynomial-time algorithm for
deciding the Network-Tree Containment Problem.

Algorithm TestTinN(N ,T )

1. Compute a T-decomposition D = ((A1, J1), . . . , (Am, Jm = ∅)).
2. For each nontrivial cluster C in T (C �= L(N) and |C| > 1), call TestCinN(N ,C);

update N by removing EC from N .
3. If N is connected, return YES; otherwise, return NO.

Fig. 4. Algorithm TestTinN for deciding the NETWORK-TREE CONTAINMENT PROBLEM

Theorem 3. Algorithm TestTinN(N ,T ) decides the Network-Tree Containment Prob-
lem in O(|V (N)||L(N)|) time.

Proof. We denote by N ′ the network obtained at the end of Step 2. We want to show
that N induces T if and only if N ′ is connected. By Corollary 2, after each iteration in
Step 2 of the algorithm, the new N still induces T ; so N ′ is connected.

Assume N ′ is connected. Then N ′ induces a tree T ′. Let IP be an inheritance
profile in N ′ that induces T ′. It suffices to show T ′ = T since N ′ is a subnetwork of
N . Now consider any nontrivial cluster C in T .C can be decomposed using the Cluster
Lemma. Let l = maxψ(C), and let e = P ∩ E(Jl). Since we call TestCinN() with C
as the input cluster, every leaf in C in T ′ is below e. If L′ in the TestCinN algorithm
is empty, the cluster below e in T ′ is C. If L′ is not empty, L′ is a cluster in Al; in
this case let v′ be the lowest common ancestor in L′. The cluster in T ′ determined
by v′ is C.

We now analyze the running time of the algorithm. (Recall that N is binary.) We
only need to compute T-decomposition once, which takes O(|Nt(N)||V (N)|) time.
Each iteration in Step 2 takes O(|V (N)|) time, and the number of clusters in T is
O(|L(N)|). The final step takes O(|V (N)|+ |E(N)|) = O(|V (N)|) time. The overall
time is therefore O(|V (N)|2).

7 Conclusion and Future work

Phylogenetic networks are the appropriate model for evolutionary histories in the pres-
ence of reticulation events. Very little is known about their combinatorial properties, and
many problems are still open in this domain. In this paper, we presented polynomial-
time algorithms for two major problems, namely (1) deciding whether a tree is induced
by a network, and (2) deciding whether a cluster is induced by a network. Those two
algorithms are based on a novel network decomposition that we introduced. Directions
for future research include enumerating the numbers of trees and clusters induced by a
network, efficient techniques for network space traversal, and accurate reconstruction
of networks from sets of clusters and trees.
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