Parallel Divide-and-Conquer Phylogeny
Reconstruction by Maximum Likelihood*

Z. Du', A. Stamatakis?, F. Lin', U. Roshan?®, L. Nakhleh*

! Bioinformatics Research Center, Nanyang Technological University, Nanyang
Avenue, Singapore 639798
2 Institute of Computer Science, Foundation for Research and Technology-Hellas,
P.O. Box 1385, Heraklion, Crete, GR-71110 Greece
3 College of Computing Sciences, Computer Sciences Department, New Jersey
Institute of Technology, University Heights, Newark, NJ 07102
* Department of Computer Science, Rice University, 6100 Main St. MS 132, Houston,
TX 77005

Abstract. Phylogenetic trees are important in biology since their ap-
plications range from determining protein function to understanding the
evolution of species. Maximum Likelihood (ML) is a popular optimiza-
tion criterion in phylogenetics. However, inference of phylogenies with
ML is NP-hard. Recursive-Iterative-DCM3 (Rec-I-DCM3) is a divide-
and-conquer framework that divides a dataset into smaller subsets (sub-
problems), applies an external base method to infer subtrees, merges
the subtrees into a comprehensive tree, and then refines the global tree
with an external global method. In this study we present a novel paral-
lel implementation of Rec-I-DCMS3 for inference of large trees with ML.
Parallel-Rec-I-DCM3 uses RAxML as external base and global search
method. We evaluate program performance on 6 large real-data align-
ments containing 500 up to 7.769 sequences. Our experiments show that
P-Rec-I-DCM3 reduces inference times and improves final tree quality
over sequential Rec-I-DCM3 and stand-alone RAxML.

1 Introduction

Phylogenetic trees describe the evolutionary relationship among a group of or-
ganisms and are important for answering many biological questions. Some appli-
cations of phylogenetic trees are multiple sequence alignment [5], protein struc-
ture prediction [19], and protein function prediction [12]. Several research groups
such as CIPRES (www.phylo.org) and ATOL (tolweb.org) are working on novel
heuristics for the reconstruction of very large phylogenies.

There exist two basic models for calculating phylogenetic trees based on
DNA or Protein sequence data: distance-based and character-based methods.
Distance-based methods construct a tree from a matrix of pairwise distances
between the input sequences. Current popular distance-based methods such as

* Part of this work is funded by a Postdoc-fellowship granted by the German Academic
Exchange Service (DAAD)

Neighbor Joining [18] (NJ) tolerate only a limited amount of error in the input;
thus, they do not perform well under challenging conditions [15]. The two most
popular character based optimization criteria are Maximum Parsimony (MP) [9]
and Maximum Likelihood (ML) [6]. The optimal ML-tree is the tree topology
which is most likely to have given rise to the observed data under a given sta-
tistical model of sequence evolution. This problem has always been known to be
very hard in practice—the number of different tree topologies grows exponen-
tially with the number of sequences n, e.g. for n = 50 organisms there already
exist 2.84 % 1076 alternative topologies; a number almost as large as the number
of atoms in the universe (=~ 108°)—and was recerntly proven to be NP-hard [3].

For constructing the Tree of Life, i.e., the evolutionary tree on all species
on Earth, efficient heuristics are required which allow for analysis of large and
complex datasets in reasonable time, i.e. in the order of weeks instead of years.
Heuristics that can rapidly solve ML are of enormous benefit to the biological
community. In order to accelerate the analysis of large datastes with thousands
of sequences via a divide and conquer approach the family of Disk Covering
Methods (DCMs) [8, 17] has been introduced. DCMs are divide and conquer
methods which decompose the dataset, computes subtrees on smaller subprob-
lems using a base method and then merge the subtrees to yield a tree on the full
dataset. To the best of our knowledge Recursive-Iterative-DCM3 (Rec-I-DCM3)
[17] is the best-known DCM in conjunction with the MP and ML criteria. In
combination with Rec-I-DCM3 we use RAxML [20] as base method and a re-
implementation of parallel RAXML [21] as global method. RAxML is among the
currently fastest, most accurate, as well as most memory-efficient ML heuris-
tics on real biological datasets. The goal of the parallel MPI implementation is
to exploit the computational power of PC clusters, i.e. to calculate better trees
within the same amount of total execution time. P-Rec-I-DCM3 is available as
open source software from the authors. It can be compiled and executed on any
Linux PC cluster.

2 Related Work

The survey of related work is restrained to parallel/distributed implementations
of maximum likelihood programs and to divide and conquer approaches. The
phylogenetic navigator (PHYNAV [13]) which is based on a zoom-in/zoom-out
approach represents an interesting alternative to Rec-I-DCM3. However, the pro-
gram has a relatively high memory consumption (crashed on a 1.000-taxon tree
with 1GB RAM) compared to RAxML. Furthermore, the global optimization
method (fast Nearest Neighbor Interchange adapted from PHYML [7]) is not as
efficient on real alignment data as RAXML [20]. Thus, it is not suited to handle
large real-data alignments of more than 1.000 sequences.

Despite the fact that parallel implementations of ML programs are techni-
cally very solid, they significantly drag behind algorithmic development. This
means that programs are parallelized that mostly do not represent the state-of-
the-art algorithms any more. Therefore, they are likely to be out-competed by

the most recent sequential algorithms. For example the largest treec computed
with parallel fast DNAml [22] which is based on the fastDNAm] algorithm (1994)
contains 150 taxa. The same holds for a technically very interesting JAVA-based
distributed implementation of fast DNAml: DPRml [11]. Performance penalties
are also caused by using JAVA due to unfavorable memory efficiency and speed of
numerical calculations. Those language-dependent limitations will become more
significant when trees comprising more than 417 taxa (currently largest tree with
DPRml, personal communication) are computed with DPRml. M.J. Brauer et
al. [2] have implemented a parallel genetic tree-search algorithm which has been
used to compute trees of up to approximately 3.000 taxa with the main limitation
being also memory consumption (personal communication).

Finally, there exists the previous parallel implementation of RAxML which
has been used to compute one of the largest ML-based phylogenies to date
containing 10.000 organisms [21]. Due to the high memory efficiency of RAxXML
(which the program inherited from fastDNAml) and the good performance on
large real-world data it appears to be best-suited for use with Rec-I-DCM3.
The goal of P-Rec-I-DCM3(RAxML) consists in a further acceleration of the
algorithm.

3 Owur new method: Parallel Recursive-Iterative-DCM3

3.1 Parallelizing Recursive-Iterative-DCM3

Rec-I-DCM3 is the latest in the family of Disk Covering Methods (DCMs) which
were originally introduced by Warnow et. al. [8]. Rec-I-DCMS3 [17] was designed
to improve the performance of MP and ML heuristics. The method applies an
external base method (any MP or ML heuristic), to smaller subsets of the full
datasets (which we call subproblems). The division into subproblems is exe-
cuted recursively until all subproblems contain less taxa than the user-specified
maximum subproblem size m. The subproblems which are smaller in size and
evolutionary diameter [17], are easier and faster to analyze. Rec-I-DCM3 has
been shown to significantly improve upon heuristics for MP [17]. In this paper
we initially show that sequential Rec-I-DCM3 with RAxML as external method
can improve upon stand-alone RAxML for solving ML. Parallel Rec-I-DCM3 is a
modification of the original Rec-I-DCM3 method. The P-Rec-I-DCM3 algorithm
is outlined below (differences from the sequential version are highlighted in bold
letters).

Outline of Parallel Rec-I-DCM3

— Input:
e Input alignment S, #iterations n, base heuristic b, parallel global search
method g, starting tree 7', maximum subproblem size m
— Output: Phylogenetic tree leaf-labeled by S.
— Algorithm: For each iteration do
e Set 7' = Parallel-Recursive-DCM3(S,m, b, T).

e Apply the parallel global search method g starting from 7’ until
we reach a local optimum. Let 7" be the resulting local optimum.
e Set T =T".

The Parallel-Recursive-DCM3 routine performs the work of dividing the
dataset into smaller subsets, solving the subproblems in parallel (using the base
method) with a master-worker scheme, and then merging the subtrees into the
full tree. However, the sizes of individual subproblems vary significantly and the
inference time per subproblem is not known a priori and difficult to estimate.
This can lead to significant load imbalance (see Section 4.3). A distinct method
of subtree-decomposition which yields subproblems of equal size for better load-
balance does not appear promising (unpublished implementation in RAxML).
This is due to the fact that Rec-I-DCM3 constructs subproblems intelligently
with regard to closely-related taxa based on the information of the guide tree.

The global search method further improves the accuracy of the Recursive-
DCMS3 tree and can also find optimal global configurations that were not found
by Recursive-DCM3, which only operates on smaller—local—subsets. To effec-
tively parallelize Rec-I-DCM3 one has to parallelize the Recursive-DCM3 and
the global search method. A previous implementation of parallel Rec-I-DCM3 for
Maximum Parsimony [4] only parallelizes Recursive-DCM3 and not the global
method. Our unpublished studies show that only parallelizing Recursive-DCM3
does not significantly improve performance over the serial Rec-I-DCM3. Our
Parallel Rec-I-DCM3, however, also parallelizes the global search method, a key
and computationally expensive component of Rec-I-DCM3. Note, that due to
the complexity of the problem and the ML criterion it is not possible to avoid
global optimizations of the tree altogether. All divide and conquer approaches for
ML to date execute global optimizations at some point (see Section 2). For this
study we use sequential RAxML as the base method and a re-implementation
of parallel RAXML (developed in this paper) as the global search method.

3.2 Parallelizing RAXxML

In this Section we provide a brief outline of the RAxML algorithm, which is
required to understand the difficulties which arise with the parallelization.

Provided a comprehensive starting tree (for details see [20]), the likelihood
of the topology is improved by subsequent application of topological alterations.
To evaluate and select alternative topologies RAxML uses a mechanism called
lazy subtree rearrangements [20]. This mechanism initially performs a rapid pre-
scoring of a large number of topologies. After the pre-scoring step a few (20) of
the best pre-scored topologies are analyzed more thoroughly. To the best of our
knowledge, RAXML is currently among the fastest and most accurate programs
on real alignment data due to this ability to quickly pre-score a large number of
alternative tree topologies.

As outlined in the Figure available on-line at [1] the optimization process can
be classified into two main computational phases:

Difficult parallelization: The Initial Optimization Phase (IOP) where the
likelihood increases steeply and many improved pre-scored topologies are found
during a single iteration of RAxML.

Straight-forward Parallelization: The Final Optimization Phase (FOP)
where the likelihood improves asymptotically and practically all improved topolo-
gies are obtained by thoroughly optimizing the 20 best pre-scored trees.

The difficulties regarding the parallelization of RAxML are mainly due to
hard-to-resolve dependencies caused by the detection of many improved trees
during the IOP. Moreover, the fast version of the hill-climbing algorithm of
RAxML which is used for global optimization with Rec-I-DCM3 further inten-
sifies this problem, since it terminates after the IOP. During one iteration of
RAxML all n subtrees of the candidate topology are subsequently removed and
re-inserted into neighboring branches. The dependency occurs when the lazy
rearrangement of a subtree ¢ yields a topology with a better likelihood than
the candidate topology even though it is only pre-scored. In this case the im-
proved topology is kept and rearrangement of subtree i + 1 is performed on the
new topology. Especially, during the IOP improved pre-scored topologies are fre-
quently encountered in the course of one iteration, i.e. n lazy subtree rearrange-
ments. Since the lazy rearrangement of one single subtree is fast, a coarse-grained
MPI-parallelization can only be based on assigning the rearrangement of distinct
subtrees within the current candidate tree simultaneously to the workers. This
represents a non-deterministic solution to the potential dependencies between
rearrangements of subtrees ¢ and ¢ + 1. This means that when two workers wq
and w; simultaneously rearrange subtrees ¢ and ¢ + 1 within the currently best
tree and the rearrangement of subtree ¢ yields a better tree, worker w; will miss
this improvement since it is still working on the old tree. It is this frequently
occurring dependency during the IOP between steps i - i+ 1 (1 = 1..n, n =
number of subtrees) which leads to parallel performance penalties. Moreover,
this causes a non-deterministic behavior since the parallel program traverses
another path in search space each time and might yield better or worse final
tree topologies compared to the sequential program. The scalability for smaller
number of processors is better since every worker misses less improved trees.

The aforementioned problems have a significant impact on the IOP only, since
the FOP can be parallelized more efficiently. Furthermore, due to the signifi-
cantly larger proportion of computational time required by the FOP the parallel
performance of the slow hill-climbing version of RAxML is substantially better
(see [21] for details). The necessity to parallelize and improve performance of
RAxML fast hill-climbing has only been recognized within the context of using
RAxML in conjunction with Rec-I-DCM3 and is an issue of future work.

3.3 Parallel Recursive-Iterative-DCM3

In this section we summarize how Rec-I-DCM3 and RAxML are integrated into
one single parallel program. A figure with the overall program flow is available on-
line at [1]. The parallelization is based on a simple master-worker architecture.
The master initially reads the alignment file and initial guide tree. Thereafter, it

performs the DCM-based division of the problem into smaller subproblems and
stores the merging order which is required to correctly execute the merging step.
All individual subproblems are then distributed to the workers which locally
solve them with sequential RAXML and then return the respective subtrees to
the master. Once all subproblems have been solved the master merges them
according to the stored merging order into the new guide tree. This guide tree is
then further optimized by parallel RAxML. In this case the master distributes the
IDs of the subtrees (simple integers) which have to be rearranged along with the
currently best tree (only if it has improved) to the worker processes. The worker
rearranges the specified subtree within the currently best tree and returns the
tree topology (only if it has a better likelihood) along with a new work request.
This process continues until no subtree rearrangement can further improve upon
the tree. Finally, the master verifies if the specified amount of P-Rec-I-DCM3
iterations has already been executed and terminates the program. Otherwise, it
will initiate a new round of subproblem decomposition, subproblem inference,
subtree merging, and global optimization. The time required for subproblem
decomposition and subtree merging is negligible compared to ML inference times.

4 Results

Test Datasets: We used a large variety of biological datasets ranging in size and
type (DNA or RNA). The datasets have been downloaded from public databases
or have been obtained from researchers who have manually inspected and verified
the alignments: Dataset1: 500 rbcL DNA sequences (1398 sites) [16], Dataset2:
2,560 rbcL DNA sequences (1,232 sites) [10], Dataset3: 4,114 16s ribosomal
Actinobacteria RNA sequences (1,263 sites) [14], Dataset4: 6,281 small subunit
ribosomal Eukaryotes RNA sequences (1,661 sites) [24], Dataset5: 6,458 16s
ribosomal Firmicutes (bacteria) RNA sequences (1,352 sites) [14], Dataset6:
7,769 ribosomal RNA sequences (851 sites) from three phylogenetic domains,
plus organelles (mitochondria and chloroplast), obtained from the Gutell Lab
at the Institute for Cellular and Molecular Biology, The University of Texas at
Austin.

Test Platform: P-Rec-I-DCM3 and RAxML are implemented in C and use MPI.
As test platform we used a cluster with 16 customized Alpha Server ES45 com-
pute nodes; each node is equipped with 4 Alpha-EV68 1GHz processors and
has 8 GB/s memory bandwidth and an interconnect PCI adapter with over 280
MB/s of sustained bandwidth. The central component of the cluster consists of a
Quadrics 128-port interconnect switch chassis which delivers up to 500 MB/s per
node, with 32 GB/s of cross-section bandwidth and MPI application latencies
of less than 5 microseconds.

4.1 Sequential Performance

In the first set of experiments we examine the sequential performance of stand-
alone RAxML over Rec-I-DCM3(RAxML). The respective maximum subset sizes

of Rec-I-DCM3 are adapted to the size of each dataset: Datasetl (max. subset
size: 100 taxa), Datasets2 (125 taxa), Dataset3 to Dataset6 (500 taxa). In our
experiments both methods start optimizations on the same starting tree. Due
to the relatively long execution times we only executed one Rec-I-DCM3 itera-
tion per dataset. The run time of one Rec-I-DCM3 iteration was then used as
inference time limit for RAxML. Table 1 provides the log likelihood values for
RAxML and Rec-I-DCM3 after the same amount of execution time. Note that,
the apparently small differences in final likelihood values are significant because
those are logarithmic values and due to the requirements for high score accuracy
in phylogenetics [23]. The experiments clearly show that Rec-I-DCM3 improves
over stand-alone RAXML on all datasets (a more thorough performance study
is in preparation).

Table 1. Rec-I-DCM3 versus RAxML log likelihood (LLH) values after the same
amount of time

Dataset |Rec-I-DCM3 LLH|RAxML LLH|| Dataset |Rec-I-DCM3 LLH|RAxML LLH
Datasetl -99967 -99982 Dataset4 -1270920 -1271756
Dataset2 -355071 -35b342 Datasetb -901904 -902458
Dataset3 -383578 -383988 Dataset6 -541255 -541438

4.2 Parallel Performance

In our second set of experiments we assess the performance gains of P-Rec-I-
DCM3 over the original sequential version. For each dataset we executed three
individual runs with Rec-I-DCM3 and P-Rec-I-DCM3 on 4, 8, and 16 proces-
sors respectively. Each individual sequential and parallel run was executed ueing
the same starting tree and the previously indicated subset sizes. In order to
determine the speedup we measured the execution time of one sequential and
parallel Rec-I-DCM3 iteration for each dataset/number of processors combina-
tion. The average sequential and parallel execution times per dataset and num-
ber of processors over three individual runs are available on-line at [1]. Due to
the dependencies in parallel RAxML and the load imbalance the overall speedup
and scalability of P-Rec-I-DCM3 are moderate. However, we consider the present
work as proof-of-concept implementation to demonstrate the benefits from using
P-Rec-I-DCM3 with RAxML and to analyze the technical and algorithmic chal-
lenges which arise with the parallelization. A separate analysis of the speedup
values in Table 2 for the base, global, and whole method shows that the perfor-
mance penalties originate mainly from parallel RAxML. Note however, that in
order to improve the unsatisfying performance of parallel RAxML it executes
a slightly more thorough search than the sequential global optimization with
RAxML. Therefore, the comparison can not only be based on speedup values
but must also consider the significantly better final likelihood values of P-Rec-
I-DCM3. To demonstrate this P-Rec-I-DCM3 is granted the overall execution

time of one sequential Rec-I-DCMS3 iteration (same response time). The final log
likelihood values of Rec-I-DCM3 and P-Rec-I-DCM3 (on 16 processors) after the
same amount of total execution time are listed in Table 3. Note that, the appar-
ently small differences in final likelihood values are significant. Furthermore, the
computational effort to attain those improvements is not negligible due to the
asymptotic increase of the log likelihood in the FOP (see Section 3.2).

Table 2. Average base method, global method, and overall speedup values (over three
runs) for P-Rec-I-DCM3 over Rec-I-DCMS3 for one iteration of each method.

Procs |base|global|overall|| procs |base|globaljoverall|| procs |base|global|overall
Dataset1 Dataset2 Dataset3
4 4| 24 | 26 4 3 | 268 | 2.7 4 1.95| 2.6 2.2
8 4.7| 2.8 | 3.6 8 53| 3.2 | 3.45 8 55| 5 5.3
16 4.85| 2.78 | 3.5 16 7| 42 | 4.6 16 6.7| 5.7 | 6.2
Dataset4 Datasetd Dataset6
4 29| 23 | 2.6 4 23| 2.7 | 25 4 3.2 195 | 22
8 42| 49 | 46 8 4.8 | 44 | 4.7 8 48| 2.5 3
16 83| 53 | 6.3 16 76| 5.1 5.8 16 54| 2.8 | 3.3

Table 3. Average Log likelihood (LLH) scores of Rec-I-DCM3 (Sequential) and
P-Rec-I-DCM3 (Parallel, on 16 processors) per dataset after the same amount of total
execution time over three individual runs.

Dataset |Sequential LLH|Parallel LLH|| Dataset |Sequential LLH|Parallel LLH
Datasetl -99967 -99945 Dataset4| -1270785 -1270379
Dataset2 -355088 -354944 || Datasetb -902077 -900875
Dataset3 -383524 -383108 || Dataset6 -541019 -540334

4.3 Parallel Performance Limits

The general parallel performance limits of RAxML have already been outlined in
Section 3.2. At this point we discuss the parallel performance limits of the base
method by example of Dataset3 and Dataset6 which initially appear to yield sub-
optimal speedups and show that those values are near-optimal. We measured
the number of subproblems as well as the inference time per subproblem for
one Rec-I-DCM3 iteration on those Datasets. The main problem consists in a
significant load imbalance cauused by subproblem sizes. The computations for
Dataset3 comprise 19 subproblems which are dominated by 3 inferences that
require more than 5.000 seconds (maximum 5.569 seconds). We determined the
optimal schedule of those 19 subproblems on 15 processors (since 1 processor

serves as worker) and found that the maximum inference time of 5.569 seconds
is the limiting factor, i.e. the minimum execution time for those 19 jobs on 15
processors is 5.569 seconds. With this data at hand we can easily calculate the
maximum attainable speedup by dividing the sum of all subproblem inference
times through the minimum execution time (37353secs/5569secs = 6.71) which
corresponds to our experimental results. There is no one-to-one correspondence
since the values in Table 2 are average values over several iterations and three
runs per dataset with different guide trees and decompositions.

The analysis of Dataset6 shows a similar image: there is a total of 43 sub-
problems which are dominated by 1 long subtree computation of 12.164 seconds
and three smaller ones ranging from 5.232 to 6.235 seconds. An optimal sched-
ule for those 43 subproblems on 15 processors shows that the large subproblem
which requires 12.164 is the lower bound on the parallel solution of subproblems.
The optimal speedup for the specific decomposition on this dataset is therefore
63620secs/12164secs = 5.23.

5 Conclusion and Future Work

In this paper we have introduced P-Rec-I-DCM3(RAxML) for inference of large
phylogenetic trees with ML. Initially, we have shown that Rec-I-DCM3(RAxML)
finds better trees than stand-alone RAxML. The parallel implementation of P-
Rec-I-DCMS3 significantly reduces response times for large trees and significantly
improves final tree quality. However, the scalability and efficiency of P-Rec-I-
DCMS3 still need to be improved. We have discussed the technical as well as
algorithmic problems and limitations concerning the parallelization of the global
method and the load imbalance within the base method. Thus, the development
of a more scalable parallel algorithm for global optimization with RAxML and
a more thorough investigation of subproblem load imbalance constitute main
issue of future work. Nonetheless, Rec-I.-DCM3(RAxXxML) currently represents
one of the fastest and most accurate approaches for ML-based inference of large
phylogenetic trees.

References

1. Additional on-line material:. www.ics.forth.gr/ stamatak.

2. M.J. Brauer, Holder M.T., Dries L.A., Zwickl D.J., Lewis P.O., and Hillis D.M.
Genetic algorithms and parallel processing in maximume-likelihood phylogeny in-
ference. Molecular Biology and Evolution, 19:1717-1726, 2002.

3. B. Chor and T. Tuller. Maximum likelihood of evolutionary trees is hard. In Proc.
of RECOMBO05, 2005.

4. C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, L. Nakhleh, and U. Roshan. Prec-i-
dcm3: A parallel framework for fast and accurate large scale phylogeny reconstruc-
tion. Proc. of HIPCoMP 2005, to be published.

5. Robert C. Edgar. Muscle: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research, 32(5):1792-1797, 2004.

6. J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution, 17:368-376, 1981.

7. S. Guindon and Gascuel O. A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst. Biol., 52(5):696-704, 2003.

8. D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging method for
phylogenetic tree reconstruction. J. Comp. Biol., 6:369-386, 1999.

9. Camin J. and Sokal R. A method for deducing branching sequences in phylogeny.
Evolution, 19:311-326, 1965.

10. M. Kallerjo, J. S. Farris, M. W. Chase, B. Bremer, and M. F. Fay. Simultaneous
parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major
clades of green plants, land plants, seed plants, and flowering plants. Plant. Syst.
Ewol., 213:259-287, 1998.

11. T.M. Keane, Naughton T.J., Travers S.A.A., McInerney J.O., and McCormack
G.P. Dprml: Distributed phylogeny reconstruction by maximum likelihood. Bioin-
formatics, 21(7):969-974, 2005.

12. D. La, B. Sutch, and D. R. Livesay. Predicting protein functional sites with phy-
logenetic motifs. Prot.: Struct., Funct., and Bioinf., 58(2):309-320, 2005.

13. S.V. Le, Schmidt H.A., and Haeseler A.v. Phynav: A novel approach to reconstruct
large phylogenies. In Proc. of GfKl conference, 2004.

14. B. Maidak. The RDP (ribosomal database project) continues. Nucleic Acids Re-
search, 28:173-174, 2000.

15. B.M.E. Moret, U. Roshan, and T. Warnow. Sequence length requirements for phy-
logenetic methods. In Proc. of WABI’02, pages 343-356, 2002.

16. K. Rice, M. Donoghue, and R. Olmstead. Analyzing large datasets: rbcL 500 re-
visited. Systematic Biology, 46(3):554-563, 1997.

17. U. Roshan, B. M. E. Moret, T. Warnow, and T. L. Williams. Rec-i-dcm3: a fast al-
gorithmic technique for reconstructing large phylogenetic trees. In Proc. of CSB04,
Stanford, California, USA, 2004.

18. N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4:406-425, 1987.

19. LN. Shindyalov, Kolchanov N.A., and Sander C. Can three-dimensional contacts in
protein structures be predicted by analysis of correlated mutations? Prot. Engng.,
7:349-358, 1994.

20. A. Stamatakis, Ludwig, T., Meier, and H. Raxml-iii: A fast program for maximum
likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4):456—
463, 2005.

21. A. Stamatakis, Ludwig T., and Meier H. Parallel inference of a 10.000-taxon phy-
logeny with maximum likelihood. In Proc. of Furo-Par2004, pages 997-1004, 2004.

22. C. Stewart, Hart D., Berry D., Olsen G., Wernert E.; and Fischer W. Parallel
implementation and performance of fastdnaml - a program for maximum likelihood
phylogenetic inference. In Proc. of SC2001, 2001.

23. T.L. Williams. The relationship between maximum parsimony scores and phyloge-
netic tree topologies. In Tech. Report, TR-CS-2004-04,. Department of Computer
Science, The University of New Mexico, 2004.

24. J. Wuyts, Y. Van de Peer, T. Winkelmans, and R. De Wachter. The European
database on small subunit ribosomal RNA. Nucl. Acids Res., 30:183-185, 2002.

This article was processed using the IXTgX macro package with LLNCS style

