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ABSTRACT

Motivation: The growing availability of genome-scale datasets has
attracted increasing attention to the development of computational
methods for automated inference of functional similarities among
genes and their products. One class of such methods measures the
functional similarity of genes based on their distance in the Gene
Ontology (GO). To measure the functional relatedness of a gene set,
these measures consider every pair of genes in the set, and the
average of all pairwise distances is calculated. However, as more
data becomes available and gene sets used for analysis become
larger, such pair-based calculation becomes prohibitive.

Results: In this article, we propose GS? (GO-based similarity of
gene sets), a novel GO-based measure of gene set similarity that
is computable in linear time in the size of the gene set. The measure
quantifies the similarity of the GO annotations among a set of genes
by averaging the contribution of each gene’s GO terms and their
ancestor terms with respect to the GO vocabulary graph. To study
the performance of our method, we compared our measure with an
established pair-based measure when run on gene sets with varying
degrees of functional similarities. In addition to a significant speed
improvement, our method produced comparable similarity scores to
the established method. Our method is available as a web-based
tool and an open-source Python library.

Availability: The web-based tools and Python code are available at:
http://bioserver.cs.rice.edu/gs2.

Contact: troy.ruths@rice.edu

1 INTRODUCTION

Genomic analysis based on multiple species’ genomes and gene
interaction networks generated by high-throughput technologies is
making very large gene set analysis commonplace. Given such
large datasets, a major point of investigation among researchers is
functional similarity and divergence among groups of genes within
and across species, biological processes and cell types (Lamb et al.,
2006; Lein et al., 2007; Su et al., 2002). Such research is aided by
the use of ontologies which provide unified vocabularies to describe
genes and their classifications (e.g. Ashburner et al., 2000; Kanehisa,
1997; Kanehisa and Goto, 2000; Khatri et al., 2005). Here, we focus
on the Gene Ontology (GO) (Ashburner et al., 2000) which was
introduced to provide a vocabulary that encodes various functional
characteristics of genes and has been widely adopted within the
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biology community. The GO classification system classifies a gene
according to how its products (i.e. RNA and proteins) behave. This
behavior is characterized in three orthogonal categories: the cellular
components it belongs to, the biological processes it is involved
in and the molecular functions it performs. These three aspects of
gene activity provide a way of characterizing and quantifying similar
functions among genes.

There are three main categories of tools used for assessing
functional similarity among genes based on their GO identifiers:
GO browsers, gene list annotation and statistical tools, and compu-
tational similarity measures (a complete list of available tools can
be found at http://geneontology.org/GO.tools.shtml).

GO browsers, such as AmiGO (http://amigo.geneontology.org/)
and QuickGO (http://www.ebi.ac.uk/ego/), provide information
retrieval capabilities, allowing for manual comparisons of genes and
their annotations. These tools produce output through visualizations
and textual data that the scientist can use to manually gauge
similarities among genes. The actual assessment of similarity is left
up to the interpretation of the researcher. Though this can allow
the biologist to judge similarity most precisely, the manual nature
of such approaches makes using them to analyze large gene sets
infeasible.

One approach to addressing this scalability problem is the use of
statistics to summarize the distribution of GO annotations within
a gene set: gene functional similarities can be judged from the
probability and density of occurrences. Popular tools, such as eGOn
(Beisvag et al., 2006) and DAVID (Huang et al., 2007) provide
web-based tools for this kind of analysis. These packages offer
several similarity heuristics for gene lists that visualize and quantify
the distribution of the gene list on the entire GO data structure.
eGOn additionally allows for hypothesis testing of GO category
representation. Bingo (Maere et al., 2005) and Ease (Huang et al.,
2007) accept a gene set and calculate the GO term enrichment: the
functional GO ‘themes’ in the gene list, or overrepresented parent
terms in the GO hierarchy. GOTM (Zhang et al., 2004) also supports
identifying enriched biological themes, in addition to providing a
visual explorer of the GO tree created by a gene list. The proliferation
of these tools and the number of reported citations they receive (over
800 for DAVID as of November 2008) underscore the usefulness of
analyzing large-scale gene sets using GO. However, while all these
tools let the researcher identify common GO terms and statistics for
a gene set, none provides a formal similarity measure that allows
for automated, comparable analysis of gene sets or clusters produced
by microarrays, etc. Thus, while statistical tools allow scientists to
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Fig. 1. An example of the GO DAG structure between the biological process root and GO:0032989 (cellular structure morphogenesis).

explore trends in large data sets, they still do not permit automated
inference of functional similarity among large sets of genes.

In order to address this need for automated tools, methods
have emerged that compute pairwise similarity of genes based on
their GO annotations. The first methods used for comparison were
developed for other semantic taxonomies, mostly lexical taxonomies
(Jiang and Conrath, 1997; Lin, 1998; Resnik, 1999). These methods
determine the similarity of two genes based on their distance
to the closest common ancestor and the annotation statistics of
their common ancestor terms. In a recent study addressing the
applicability of these measures to the GO (Sevilla ez al., 2005),
the method of Resnik (1999) was found to be the most accurate;
however, they did not provide any direct biological evidence of the
functional similarity. This gap was bridged by the semantic similarity
measure of Wang et al. (2007), which used weights to quantify the
different types of relationships encoded in the GO data structure.
Their method targeted the drawbacks of the lexical measures with
respect to shallow annotations, requiring annotation statistics, and
addressing the semantic relationships expressed through edges of
the GO data structure. Using several biological case studies, Wang
et al. (2007) demonstrated better performance than the method
by Resnik (1999) in comparison with the ground truth estimated
manually by biologists. However, while this method provides
accurate estimates of functional similarity based on GO annotation
similarity, it is pairwise and does not scale well to large gene
sets. As we show in our results section, even computing annotation
similarity on sets of 300 genes results in extremely long compute
times.

Genomic analysis based on multiple species’ genomes and gene
interaction networks generated by high-throughput technologies
is making very large gene set analysis commonplace. As a result,
it is important to have efficient tools for estimating the functional
relatedness for these large sets.

In this article, we propose GS2 (GO-based similarity of gene sets),
an efficient GO-based measure of functional similarity of a gene
set. The method operates in linear time in the size of the gene
set under study. We compared our method with the leading GO
pairwise measure of Wang et al. (2007) (extended appropriately to
yield set-based values). Our method provides similar accuracy to
that of Wang et al. (2007), yet much faster. This makes our method

very appropriate for large-scale studies of gene sets and their GO
annotations.

2 METHODS

In this section, we describe GSZ, our measure of similarity of a gene set based
on the GO terms used to annotate these genes. To compute the similarity of a
gene set using the established similarity measures, all of which are pairwise
measures, one has to compute all pairwise distances of the set and average
their sum by the number of pairs. On the other hand, our measure is inherently
set-wise, and provides significant gains in computational efficiency over the
standard pairwise measures applied to a set.

2.1 GO vocabulary structure

GO provides a functional vocabulary for genes in terms of biological
process, cellular component and molecular function. Each gene has a set of
GO annotations that convey functionality through these three inter-related
ontologies. The GO tree, as it is referred to in literature, is encoded as
a collection of three directed acyclic graphs (DAGs), each representing
a different ontology. While largely disconnected, these ontologies can be
connected by edges representing regulation relationships. A term in the GO
tree represents an annotatable concept, and is related to other terms in the
tree largely through is-a semantics; however, other relationship types occur
in the GO including part-of, regulates, positively regulates and negatively
regulates. All these relationships manifest as directed edges in the graph,
and each term in the tree must follow the true path rule: ‘the pathway from
a child term all the way up to its top-level parent(s) must always be true’
(http://www.geneontology.org).

For example, Figure 1 displays the relationships of GO terms on
the path from cellular structure morphogenesis (GO:0032989) to the
biological process root. This is a subgraph of the biological process
ontology, in that there exist other terms that point towards developmental
process (GO:0032502) or cellular process (GO:0009987) but they are not
part of the inheritance of cellular structure morphogenesis. While most
relationships are is-a, there is one part-of edge connecting anatomical
structure morphogenesis to anatomical structure development. Figure 2, the
GO subgraph induced by the paths connecting regulation of transcription,
DNA-dependent (GO:0006355) to the GO root, is far more complex and
demonstrates the need for computational analysis methods.

2.2 Gene set similarity

Our method calculates the similarity of a set of genes based on their GO
annotations. Throughout this article, we use g; to denote a gene and G; to
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Fig. 2. The inheritance graph of GO : 0006355 (regulation of transcription, DNA-dependent). The number of inheritance terms can grow rapidly; in this case

there are 35 members in the graph.

denote the set of GO terms that annotate it. Given a universal set % of
genes, and a set 4 ={g1,g2,...,8k} of k genes, ¥ C %, the goal is to derive
a measure m:2% — [0, 1] such that m(%) is the functional similarity of the
gene set 4.

A straightforward way to obtain such a measure is to use any of the
pairwise similarity measures discussed in the introduction on the set. More
formally, let m': % x % — [0, 1] be any pairwise measure, e.g. the measure
of Wang et al. (2007). We define m(%) as

wrtnia S
 iilsijsk i<
m&@)= k(k—1)/2 : M

This pair-based calculation of the similarity of gene set ¢ takes time
O(|%% - £), where ¢ is the time it takes to compute ' on a pair of genes.

As we discussed above, inferring the functional similarity of large gene
sets using this calculation may become prohibitive. We now describe our
measure GS? that is computable in linear time in the size of the gene set,
thus providing a linear speedup over the pair-based calculation.

2.2.1 Definitions We now briefly describe the GO tree structure that we
will use in defining our method. Given a GO tree (DAG) T'=(V,E), where
V is the set of the nodes and E is the set of directed edges, with set of roots
RV for each ontology, we define A(;, the set of ancestors of term i, to be
the set containing all terms that are on the path from i to a root, including
term i itself.

Ay ={ijufjeV:i~j~r(reR)}.

This definition can be generalized to a set .# of GO terms in a straightforward

manner.
Ag= U A(i).
ice s

Intuitively, the ancestors of a set .# of GO terms are all terms lying on the
paths from terms in .# to a root in R. Note that since there are three roots
in the GO tree, the ancestors of terms in different ontologies will terminate
at different roots. In general such ancestor sets will not share terms, with
the exception of regulates relationships which can link terms in different
ontologies. Ancestors will be useful in calculating how many of the genes

% share common functionality, which is expressed in terms of the shared
inner terms of the GO tree. For each GO term i, we associate the set of genes
in ¢ that are annotated by GO terms which are ancestors of i; we call the
size of this set the rank of term i with respect to set ¢, and denote it by
Rankeg(i). Formally,

Rankg(i)=|{gj €9 i€ Ag, ). 1)

As terms are chosen closer to the root in the GO tree, more genes will
share the fundamental functionality. Consequently, this rank will be useful

in describing the distribution of genes with respect to functionality. The
maximum value of Rankg(i) of a term i is |¥|, and the minimum size is 0
(i.e. no genes have that functionality).

2.2.2 The GS? measure Our measure averages the similarity contributed
by each gene in ¢. Each gene is compared with the remaining set of genes
by calculating how closely that gene follows the functionality distribution
of the remaining genes. The functionality distribution is represented by the
distribution of ancestor GO terms for each gene. We will use the rank set
[Equation (2)] to quantify the distribution of ancestor terms.

GSW)— Z Comp(gi,9 —{gi}) 3)
g €9
h
where Complgs. )= Z Z Rank %(k) @
ENTTE |A(, S

Our GS? similarity measure [Equation (3)] averages the comparison values
for each gene against the rest of the set. This leaves most of the work in the
Comp function, which compares the given gene, g;, to the remainder set of
genes, that is & —{g;}.

It is important to note that our method is defined for sets of genes with
at least two members, so that we never compare a gene with an empty set
of genes. With this said, we compute the pairwise distance of two genes by
creating a gene set with only those two genes as members.

In comparing one gene (target) with a set of genes (source), ideally we
want to return a value of 1 when the target and source genes share all the
same GO annotations, and consequently all the same ancestor terms of those
annotations. Having identical ancestor sets implies identical functionality in
terms of the GO tree; therefore, a value of 1 implies identical functionality.
This will only happen when all genes map to the same set of GO terms.

Our method employs a simple counting scheme to measure the comparison
between target and source genes. We average the contribution by each
annotated term of the target. For each annotated term, we calculate how
similar its ancestor set is in comparison to the ancestors of the source genes.
This is accomplished by counting the number of source genes that share each
ancestor term of the annotation. We have defined this already as the rank, and
normalize the value by the maximum possible rank, which is |¢|. This value
is then averaged over all ancestor terms of the annotation. Since Comp returns
a value between 0 and 1, the average of comparisons for each gene will yield
a value between 0 and 1 as well. The value of GS? shares the same intuition
as Comp; if all genes have high comparison values (each gene is similar to
all other genes), then the similarity of the set should be high. Likewise, low
comparison values will yield a low set similarity value. It is important to note
that our measure quantifies similarity based on graph connectivity rather than
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Table 1. The legwork for the Comp calculation of an example gene set
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Fig. 3. The counting phase of GS? applied to three genes. The annotation
term(s) for each gene are highlighted by a black box. In this case gene 2 has
annotations: GO : 0048869 and GO :0009653. The rank of each term with
respect to the entire set is the number to the left of the GO identifier.

edge types, which means GS? is robust to new relationships introduced into
the GO.

To illustrate our method, consider genes G1 ={G0:0016043}, Go ={GO:
0048869, GO :0009653}, G3 ={G0O:0032989}, where 4 ={g1, g2.¢3}. These
GO terms correspond to the inheritance graph in Figure 1. In order to
compute GSz(g), we must first calculate the rank value for each term in
the graph. This calculation is shown in Figure 3, where annotated terms for
each gene are labeled and highlighted, and the number to the left of the
GO accession number is the rank value for each term. Since our method is
robust to relationship types, edge labels are elided. According to Equation (3),
we average the contribution of each gene (g1,g2,83). To compute this
contribution, we calculate the rank set for each ancestor term per annotated
term. Recall that Comp compares one gene to a set of genes, or in our
example, to the two other genes. Instead of recalculating the rank values for
each call to Comp, we can just subtract one from the rank calculation with
all genes present. This emulates removing the target gene from the set in the
Comp calculation. Also, we need to decrease the size of the source gene set
by one as well. In order to calculate Comp for g;:

Z Rankg(k)—1

1
Comp (gl,g—{gl})=§ T

k€A(G0:0016043)
TermAvg
Table 1 shows the computation of the Comp value for each gene. As you can
expect, the Comp value for g; is the highest since it proportionally shares the
most functionality with genes g> and g3. Since we are dealing with shallow
annotations, we can expect the fidelity of the method to decrease. The final
computation of GS? follows:

0.834+0.69+0.56

3 =69%.

GS*({g1.82.83) =

2.2.3 Complexity As we now show, our method is computable in time
O(md|¥|), where ¢ is the gene set, m is the maximum number of GO
annotation terms per gene, and d is the maximum size of an ancestor set. For
large gene sets, which is the emphasis in this work, we have m < |¢| and
d < |¥|; therefore, for large gene sets, GS? is computable in O(|%|) time.

The time complexity of GS? comes from two steps: computation of the
ancestors and ranks, and computation of similarity.

In our implementation of GS?, we simultaneously precompute the rank
[Equation (2)] and cache each ancestor set per GO term. In the worst case,
no gene shares GO terms with any other gene and each GO term has a unique
path to the root of the ontologies. This means we need to compute the rank
set for each of these unique terms. Since each gene has O(m) terms with O(d)
ancestors, there are O(imd|%¥|) rank values we need to precompute. The rank,
however, can easily be computed with an O(1) operation while constructing
the ancestor sets. Basically, we maintain a mapping for each GO term to the
number of genes sharing that term. As we generate the ancestor sets for each
gene in O(md|¥|) time, we increment the mapping. Ultimately, this mapping
is the size of the rank, generated in O(md|¥)).

The computation of similarity uses two equations, one for the comparison
[Equation (4)] and another for the similarity [Equation (3)]. Since we have

Gene  Term Ancestors Rank  Term avg. Comp

g1 G0:0016043 G0:0016043
GO:0009987
G0O:0008150

2 GO:0048869  GO:0048869
GO:0009987

G0:0032502

G0O:0008150

G0:0009653 G0O:0009653
GO:0048856

G0:0032502

GO:0008150

g3 G0:0032989  GO:0032989
G0:0016043
GO:0048869
G0:0009987
G0:0032502
G0:0009653
GO:0048856
GO:0008150

0.83 0.83

0.75 0.69

0.63

0.56 0.56

[ NS SN [N o S © Ji S GG (G S G S N T S -

precomputed both the ancestors set and rank values, Equation (4) requires
O(md) time, since it loops over the terms of the gene and then the ancestors
for each of those terms. Retrieving the ancestor set and the ranks costs O(1).
Equation (3), then, is computable in O(md|¥|) time, since it computes the
comparison value for each gene in the set.

Therefore, the time complexity of GS? is O(md|%|). For large gene sets,
such as the ones we are interested in analyzing, we have m < |¥| and d < |¥|;
therefore, for such gene sets, the time complexity of the method is dominated
by the size of the gene set, which is O(|¥|).

Further, compared with the pairwise-based calculation of the functional
similarity of a gene set, such as the one described in Equation (1), the GS*
method provides an O(|¥|) improvement.

3 RESULTS

To evaluate the performance of the GS? measure, in terms of
the similarity it measures and the efficiency of computing it, we
conducted experiments on large sets of genes and compared the
performance of our method with that of a pairwise-based similarity
measure of gene sets. Equation (1) was used to compute set similarity
from the pairwise measure.

Data: in our experiments, we used annotated genes from the human
genome. Since GO annotations express functionality across many
species, the human genome uses roughly 6000 unique identifiers out
of about 27 000 terms in the entire GO tree. To verify that the human
genome did not provide a significant sampling bias of the GO tree,
we sampled at random 2000 unique GO terms and for each term
measured the frequency of edge types on the path from that term
to a root. The frequency of each edge type was averaged over 20
trials using multiple GO term distributions: Mus musculus, Danio
rerio, Drosophila melanogaster and the entire GO tree. Figure 4
shows a doughnut plot of the relative edge type frequencies across
the different organisms.

We downloaded the daily snapshot of the GO tree from the
GO web site on September 28, 2008. We downloaded the human
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Drosophila melanogaster
Homo sapien

Mus musculus

Entire GO tree

Danio rerio

Fig. 4. The relative frequencies of the different edge types across several
GO term distributions: Homo sapien, M.musculus, D.rerio, D.melanogaster
and the entire GO tree. Each ring in the doughnut plot represents a different
distribution.

gene dataset and their GO annotations from the Ensembl BioMart
(http://www.ensembl.org/biomart/martview) on September 1, 2008.

Implementation: we implemented the GS? similarity measure in
Python (http://www.python.org). Our decision to use Python rested
on the language’s strong scientific libraries, rapid prototyping
capabilities and ease of transitioning code between computers.
Transitioning code was important because we used Rice University’s
supercomputer to run many of the tests. Since Python is an
interpreted language, it is more important to focus on the relative
times between methods rather than the absolute running times.

For comparison purpose, we implemented the semantic pairwise
similarity measure of Wang et al. (2007) in Python as well. We chose
to use this method for comparison because it demonstrated higher
accuracy than the method of Resnik (1999), which, in the study
by Sevilla et al. (2005), outperformed all other similarity measures
applicable to the GO structure. In short, the method of Wang et al.
(2007) provides the highest accuracy of GO similarity and provided
a clear benchmark against which to compare our method. While
online tools for this method were created for both pairwise and
set comparison, an accessible web API was not available. When
considering the number of tests we wanted to run, and the need
to compare runtimes, we opted for a local implementation. For all
weighted tests we used the values recommended by Wang et al.
(2007) of 0.8 and 0.6 for the is-a and part-of relationships in the GO
tree; however, we also compared our method with the unweighted
version, where the weights for is-a and part-of relationships were
both set to 1. To obtain gene set similarity values, we used this
pairwise measure as described in Equation (1). Since Wang et al.
(2007) did not suggest tested values for regulates relationships, we
disregarded them in the calculations; however, our method is robust
to their inclusion.

Testing accuracy: we designed an experiment to test the accuracy of
GS2 in comparison to the semantic pairwise method of Wang et al.
(2007). This experiment also allowed us to analyze time efficiency
with respect to the average number of terms per gene in the set.
In this experiment, we started with sets of highly similar genes and
gradually degraded the set similarity by introducing larger and larger
percentages of random genes: if we start with a similar set of genes,

1.0 : " " .
- - Pairwise-based (Weighted)
- Pairwise-based (Unweighted)
097 —Gs? 1
0.8 J
>
=
<07 J
o
£
&5 o-6r o SN J
Avg similar terms <.
0.5¢ Z. ]
sl ]
4t 4
e 4
o4t [ 1 e 5
800204060810 G
0.0 0.2 0.8 1.0

0.4 0.6 E
Percent of random genes

Fig. 5. The similarity measured by the three methods, on sets of 100 genes,
with varying degrees of relatedness among the genes in a set. The x-axis
shows the percentage of the gene set replaced by random genes. ‘Pairwise-
based’ refers to the method by Wang ez al. (2007) when plugged into the set
similarity calculation given in Equation (1).

replacing a percentage of those genes with randomly selected ones
will cause the similarity of the set to decrease. On the other hand, if
we start with a random set, replacement with random genes should
have little effect on the similarity of the set. We chose our sets of
similar genes by selecting a prototype gene around which to build
the set. Then genes with exactly a certain number of GO terms in
common with a prototype gene were selected. In the resulting set,
each gene may have a varying total number of GO terms, but all
share an exact number of GO terms with the prototype gene. In
order to introduce dissimilarity, we replaced genes in this similar
set with genes selected at random from the Ensembl human gene
databank.

In our experiment, we measured the similarity of gene sets with
seven, eight and nine shared GO terms. For each of these, we
introduced an increasing amount of random genes from 10% to
100% of the set size in increments of 10%, maintaining a set
size of 100 genes. In this manner we started with similar sets but
ended with completely random sets. We repeated this process 100
times. We kept track of the time for each method to calculate the
similarity, the similarity reported, the average number of GO terms
per gene and the average number of shared genes. Figure 5 plots the
average similarity measured by the three different methods (pairwise
with weights, pairwise without weights and GS?). Figure 6 plots
the similarity measured by the pairwise semantic method with the
similarity measured by our set method, and Figure 7 shows the speed
boost of our set method over growing number of GO terms per gene.
Note that these figures present the experimental results of gene sets
with seven shared GO terms. Datasets with eight and nine shared
GO terms yielded similar trends to those reported here.

Testing efficiency: we also designed a simple experiment to measure
the performance of our method over varying gene set sizes.
We calculated the similarity of random gene sets of size 50 to 3000
and recorded the time efficiency of our method. For comparison
purposes, we projected the time cost of the pairwise method based
on our results to the previous experiment. See Figure 8 for the results
of this experiment.
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Fig. 6. A comparison of the similarity computed by GS? to that measured
by the pairwise method of Wang et al. (2007). The dotted line is the 45° line.

Speedup of set measure
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Fig. 7. The time speedup of GS? versus the pairwise method of Wang ef al.
(2007) as the number of GO terms per gene in the set increases. Values are
normalized for comparison purposes.

4 DISCUSSION

We analyzed the quality of GS? measurements in two ways. First,
we compared our method with an established method in the area
(Wang et al., 2007), reasoning that returning results similar to
this measure would at least capture the operational definition of
similarity. Even though there are several established methods for
pairwise GO similarity, the size of the gene sets prohibited a
comparison to each one; rather, we chose the best performing method
in terms of biological similarity. Wang et al. (2007) specifically
compared their method with the method of Resnik (1999), which
was found to provide the highest accuracy measure by Sevilla et al.
(2005). Second, we designed our experiments in such a way that the
similarity of genes was guaranteed to decrease: though we cannot
assert the correct similarity value for a set of genes, we can say that
a set of genes that share many GO terms in common is very likely to
be more functionally similar than a set of genes whose annotations
hardly overlap at all. In our experiment, we employed this reasoning
by starting with a set of genes that shared many GO terms in

103 L

102 F

Pair-based
10

Time (sec)

10°

10"

50 100 150 200 250 300 350
Set Size

Fig. 8. The time efficiency of GS? over the pairwise method of Wang et al.
(2007) as the size of gene sets increases. Outliers are due to garbage collection
in Python.

common. We then introduced increasing amounts of random genes
into this set by replacement (removing a certain number of ‘similar’
genes and replacing them with the same number of randomly chosen
genes). As can be seen in Figure 5, the established method returned
decreasing similarity scores as more random genes were added,
confirming that our experimental methodology achieved its intended
purpose.

In terms of accuracy, we can see in Figure 5 that our method
closely follows the trend of the pairwise semantic similarity method.
All methods demonstrated expected similarity to the introduction of
random genes. However, note that the similarity values computed
by GS? mirrored the descent of the weighted pairwise method
rather than the unweighted calculation. In Wang er al. (2007),
sensitivity to semantic relationships (is-a and part-of) was identified
as being important to correct estimation of functional similarity. It
is notable that our method does not explicitly weight these semantic
relationships, but nonetheless, performs similarly to methods that
use them. To investigate this further, we plotted the weighted
pairwise measure against the set similarity measure. We discovered
that the covariance of the these distributions was close to zero
(0.038), and the measurements were closer at low similarity values
and farther at higher similarity ones. Figure 6 displays this high
correlation. Therefore, in terms of accuracy, our method not only
performs on par with established methods, but also demonstrates
sensitivity to semantic relationships without explicitly using them.
This latter point suggests that at the scale of large gene sets (in this
case 100 genes), semantic relationships are either less important
to consider than previously thought or somehow encoded in the
structure of the tree. We suspect that the former condition holds for
the GO tree.

Since the annotations of the human genome constitute a fraction of
the total GO topology, our similarity calculations could be effected
by the bias of the human GO subgraph. Since our measure does
not specifically weight different semantic relationships, if human
genes are annotated with terms that use is-a relationships more
frequently than the rest of the GO tree, then our similarity results
would not extend to other organisms that carry a different bias.
To test this, we sampled the frequency of GO edge types from
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several GO term distributions. As shown in Figure 4, all distributions
had nearly identical frequencies across all edge types. As expected,
is-a occurs with the highest frequency (roughly 85%) across all
distributions with part-of a distant second. This highlights two
important points. First, the distribution of edge types is similar for the
selected organisms as well as the entire GO tree, and consequently
our method will extend to different GO distributions. Second, since
the frequency of is-a relationships for large gene sets eclipses other
edge types, similarity is a derivative of topology rather than edge
semantics. This explains why our method parallels the performance
of semantic methods without explicitly weighting edge types.

Our method also proved to be very efficient not only with respect
to set size, but also in terms of the number of GO terms. As shown in
Figure 7, as the number of GO terms increases, so does the efficiency
boost provided by GS2. We also observe the effectiveness of our
method over large sets. In Figure 8, our method takes 0.3 seconds
to calculate the similarity for a set of 3000 genes. The outliers in
the plot resulted from garbage collection in Python. In comparison,
in the same amount of time, the pairwise method can calculate the
similarity for a set with eight genes only.

It is important to note that the performance increase of our
method over the pairwise method of Wang et al. (2007) would hold
over all set similarity measures that are inherently pairwise-based
computation. As the size of the set increases, the calculation time
increases quadratically. This results in millions of calculations rather
than the thousands we manage to compute while still preserving
high-quality similarity measurements.

5 CONCLUSIONS

In this article, we provide an efficient and accurate gene set similarity
measure, GS2. In addition to measuring similarity at remarkably
fast speeds, our method performed on par with semantic methods
without explicit modeling of semantics, such as in weighting GO-
term relationships. A web-based implementation of GS? is available
at http://bioserver.cs.rice.edu/gs2.
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