Reconstructing Reticulate Evolution in Species — Theory
and Practice

Luay Nakhleh
Department of Computer
Sciences
University of Texas at Austin
Austin, Texas 78712

nakhleh@cs.utexas.edu

ABSTRACT

We present new methods for reconstructing reticulate evo-
lution of species due to events such as horizontal transfer
or hybrid speciation; both methods are based upon exten-
sions of Wayne Maddison’s approach in his seminal 1997
paper. Our first method is a polynomial time algorithm
for constructing phylogenetic networks from two gene trees
contained inside the network. We allow the network to have
an arbitrary number of reticulations, but we limit the retic-
ulation in the network so that the cycles in network are
node-disjoint (“galled”); we prove accuracy guarantees for
our first method by presenting a formal characterization of
the set of gene trees defined by a species network. Our sec-
ond method is a polynomial time algorithm for constructing
networks with one reticulation, where we allow for errors in
the estimated gene trees. Using simulations, we demonstrate
improved performance of this method over both Neighbor-
Net and Maddison’s method.

Categories and Subject Descriptors

F.2.0 [Theory of Computation|: General; G.4 [Mathem-
atical Software]: Algorithm Design and Analysis; J.3 [Co-
mputer Applications]: Life and Medical Sciences

General Terms

Algorithms, Theory, Experimentation.

Keywords

Phylogenetic networks, gene trees, subtree prune and re-
graft.

*Currently on sabbatical at the Radcliffe Institute for Ad-
vanced Study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RECOMB’04, March 27-31, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-755-9/04/0003 ...$5.00.

%
Tandy Warnow
Department of Computer
Sciences
University of Texas at Austin
Austin, Texas 78712

tandy@cs.utexas.edu

C. Randal Linder
Section of Integrative Biology
School of Biological Sciences
University of Texas at Austin

Austin, Texas 78712

rlinder@mail.utexas.edu

1. INTRODUCTION

The motivation for this paper is the problem of recon-
structing accurate evolutionary history in the presence of
reticulation events, such as hybrid speciation (where organ-
isms hybridize and create new species), or horizontal trans-
fer (via hybridization or viral transmission, for example).
Both types of reticulation events are sufficiently common
to be of serious concern to systematists; hybrid speciation
is common in some very large groups of organisms: plants,
fish, amphibians, and many lineages of invertebrates, and
horizontal gene transfer appears to be very common in bac-
teria [8] with lower levels being evident in many multicel-
lular groups. Such evolutionary histories cannot be ade-
quately represented using trees; instead, phylogenetic net-
works (which are basically directed acyclic graphs, coupled
with time constraints) are used.

Several methods exist for reconstructing phylogenetic net-
works from gene datasets; of these, NeighborNet by Bryant
and Moulton [2] and a method by Wayne Maddison [10]
are the most relevant to this paper. NeighborNet uses a
“combined analysis” approach because it combines sequence
datasets by concatenation, and then seeks the phylogenetic
network on the basis of the distance matrix produced by
the combined dataset. Maddison, on the other hand, uses a
separate analysis where the network can be reconstructed
by first inferring individual gene trees from separate se-
quence datasets, and then reconciling the trees into a net-
work. Maddison also showed the connection between phylo-
genetic network reconstruction and the calculation of rooted
subtree prune and regraft (rSPR) distances (which we de-
fine and discuss below). Maddison showed explicitly how to
construct a network containing a single reticulation from its
two trees (which are related by one rSPR move), and sug-
gested that networks with additional reticulations could be
inferred from individual gene trees, provided that the rSPR
distance between two constituent gene trees could be calcu-
lated. However, Maddison did not show (or prove) how to
use rSPR distance calculations in order to construct phylo-
genetic networks. Furthermore, the rSPR Distance problem
is currently of unknown complexity [1] (a naive algorithm
would solve the problem in O(n?™) time, where n is the
number of leaves in each of the trees, and m is the rSPR
distance between the trees).

In this paper we consider the inference of “gt-networks”
(for “galled tree” networks, which is the terminology used
in [6]); these are phylogenetic networks in which reticula-

tion events are constrained so as to be evolutionarily inde-
pendent of each other (see [6] for a biological justification
of the model). This model was first introduced by Wang et
al. [15], and later formalized and further pursued by Gus-
field et al. [6]. For this special case, we present polynomial
time algorithms that provably reconstruct accurate phylo-
genetic networks, provided that accurate gene trees can be
obtained. We also present polynomial time algorithms for
reconstructing phylogenetic networks from inaccurate gene
trees, and we demonstrate the improvement in accuracy of
these methods over two previous methods for phylogenetic
network reconstruction in simulation.

The rest of the paper is organized as follows. In Section 2
we briefly describe phylogenetic networks, including the def-
inition of gt-networks and the rSPR operation. In Section 3,
we briefly describe two of the evolutionary events that neces-
sitate the use of phylogenetic networks; we also review Mad-
dison’s approach and discuss its limitations. In Section 4 we
present a formal characterization of gene trees within species
networks in terms of the rSPR distances among them, and
then present our efficient algorithm for reconciling accurate
gene trees into a gt-network. In Section 5, we present a
linear time algorithm for the following nice combinatorial
problem: given two trees t1 and t2, does there exist a pair
of trees T1 and T> refining t1 and t2, respectively, such that
Ty and T5 are the two induced trees in a gt-network with
one reticulation? We show how to use this algorithm for re-
constructing phylogenetic networks in practice in Section 6,
and we (briefly) summarize the results of a simulation study
comparing the performance of this method (which we call
SPNET, for “Species Network”) to NeighborNet. We close
in Section 7 with final remarks and directions for future re-
search.

2. NETWORKS AND GT-NETWORKS
2.1 Background

2.1.1 Graph-theoretic definitions

Given a (directed) graph G, E(G) denotes the set of (di-
rected) edges of G and V(G) denotes the set of nodes of G.
We write (u,v) to denote a directed edge from node u to
node v, in which case w is the tail, v the head of the edge,
and u is a parent of v. The indegree of a node v is the num-
ber of edges whose head is v, while the outdegree of v is the
number of edges whose tail is v. A directed path of length
k from u to v in G is a sequence uoui - - - ur of nodes with
u = ug, v = uk, and Vi, 1 < i <k, (ui—1,ui) € E(G); we
say that u is the tail of p and v is the head of p.

Node v is reachable from u in G, denoted u ~» v, if there
is a directed path in G from u to v; we then also say that
u is an ancestor of v. Given a tree T and a subset L’ of
the leaves, we write T'|r/ to denote the subtree obtained by
restricting T to leaves L, i.e., by removing all leaves not in
L’ and all incident edges. If X is a subtree of T, we denote
by T'\ X the tree obtained by removing subtree X from 7T'.

We denote by L(T") the leaf-set of a tree T'. An undirected
path p of length k£ between v and v in a rooted tree T is a
sequence uoui ---ur of nodes with u = wo, v = uk, and
Vi, 1 < i < k, either (ui—1,u;) or (us;,u;—1) is an edge of
T. If p is an undirected path in tree T, and whose two
endpoints are u and v, we denote by END(p) = (U, V) the
two subtrees U and V attached to u and v, respectively, and

that do not contain any edges from p. We use p to denote
the path itself, as well as the edges of the path.

2.1.2 Strict consensus and compatibility trees

Let T be a tree leaf-labeled by a set S of taxa. Each edge
e in T induces a bipartition w(e) = {A(e)|B(e)} on the set S,
where A(e) is the set of taxa “below” e, and B(e) is the set
containing the rest of the taxa. We denote by C(T) the set
of all bipartitions induced by tree T'. We say that e; and eq
(and their associated bipartitions) are compatible, denoted
e1 = eg, if there exists a tree T that induces both 7(e1) and
m(e2). This definition of compatibility naturally extends to
sets of bipartitions, and hence also to trees.

If we contract an edge in T, thus identifying the endpoints
of that edge, we obtain another tree T’ on the same leaf set;
T is then said to refine T”, and T” is said to be a contraction
of T. If T" is the result of contracting a set of edges in T,
then too T" is a contraction of T, and T is a refinement of
"

A set of trees is compatible if the trees have a common
refinement; its minimal common refinement (called the com-
patibility tree) is unique. For any set of trees, the maximally
resolved common contraction (called the strict consensus
tree) is also unique. Both the compatibility and strict con-
sensus trees can be found in O(kn) time, where there are k
trees on the same set of n leaves [5, 16, 3].

Given two trees 11 and T3, the set U(T1,7T2) contains all
edges of T1 that are not compatible with Ty; U(T2,T1) is
defined similarly. Note then that 7% and T» are compatible
if U(Ty,T2) = U(Te, Th) = 0.

If a tree T has a node v with indegree and outdegree one,
we replace the two edges incident to v by a single edge; this
operation on 7T is called forced contraction.

2.2 Phylogenetic networks

A phylogenetic network N = (V, E) with a set L C V of
n leaves, is a directed acyclic graph in which exactly one
node has no incoming edges (the root), and all other nodes
have either one incoming edge (tree nodes) or two incoming
edges (reticulation nodes). The nodes in L have no outgoing
edges. Tree edges are those whose head is a tree node, and
network edges are those whose head is a reticulation node.

In this paper, we focus on binary networks, i.e., networks
in which the outdegree of a reticulation node is 1 and the
outdegree of a tree node is 2. Further, all trees are binary,
i.e., all nodes (except for the leaves) have outdegree 2.

As discussed in [9], reticulation events impose time con-
straints on the phylogenetic network, which we now briefly
review. A phylogenetic network N = (V, E) defines a partial
order on the set V' of nodes. Based on this partial order, we
assign times to the nodes of N, associating time ¢(u) with
node u. If there is a directed path p from node u to node
v, such that p contains at least one tree edge, then we must
have t(u) < t¢(v) (in order to respect the time flow). If
e = (u,v) is a network edge, then we must have t(u) = t(v)
(because a reticulation event is, at the scale of evolution, an
instantaneous process).

Given a network N, we say that p is a positive-time di-
rected path from v to v, if p is a directed path from u to
v, and p contains at least one tree edge. Given a network
N, two nodes u and v cannot co-exist in time if there exists
a sequence P = (p1,p2,...,pk) of paths such that (1) p; is
a positive-time directed path, for every 1 < i < k, (2) u

is the tail of p1, and v is the head of pi, and (3) for every
1 <1¢ < k — 1, there exists a reticulation node whose two
parents are the head of p; and the tail of p;41.

If two nodes w and v cannot co-exist in time, then they
cannot be “involved” in a reticulation event. In other words,
u and v cannot be the two parents of a hybrid (i.e., there
does not exist a reticulation node w such that (u,w) and
(v, w) are edges in the network), nor can there be a horizon-
tal gene transfer between them (i.e., neither (u,v) nor (v,u)
can be an edge in the network). This property is further
discussed in [10, 12, 9].

2.3 gt-Networks

In this paper, we assume a biologically-motivated restricted
class of phylogenetic networks, called gt-networks, proposed
by Wang et al. [15] and Gusfield et al. [6].

DEFINITION 1. In a phylogenetic network N, let w be a
node that has two directed paths out of it that meet at a
reticulation node x. Those two directed paths together define
a “reticulation cycle” Q. Node w is called the “coalescent
node” of Q, and x is the “reticulation node” of Q.

DEFINITION 2. A reticulation cycle in a phylogenetic net-
work that shares no nodes with any other reticulation cycle
is called a “gall”.

We denote by Q7 a gall whose coalescent node is w and
whose reticulation node is . We denote by E(Q3) the set
of all edges on gall Q; formally, E(Q3y) = {e : e is an edge
on a directed path from w to z}. The set RE(Q}) (for
“reticulation edges”) denotes the edges whose head is z, i.e.,
the edges incident into x. When the context is clear, we
simply write @ for a gall, without explicitly naming the
coalescent and reticulation nodes.

DEFINITION 3. A phylogenetic network N is called a “gt-
network” if every reticulation cycle is a gall.

Figure 1(a) shows a gt-network N with a gall QY. The
set E(Q%) contains the edges (w,w1), (wi,u1), (w,ws2),
(w2, u2), (u1,x), and (uz,x). The set RE(Q}) contains the
two edges (u1, x) and (uz,z). Obviously, gt-networks satisfy
the synchronization property. In this paper, we assume that
there is at least one tree node on each of the two paths from
w to x in a gall QY (otherwise, the network would violate
the synchronization property).

We break a gall QY by removing exactly one of the edges
in the set RE(QY).

DEFINITION 4. A tree T is induced by a gt-network N if
T can be obtained from N through one of the possible ways
of breaking all the galls in N, followed by forced contraction
operations on all nodes of indegree and outdegree 1.

Figures 1(b) and 1(c) show the two possible trees induced
by the gt-network N in Figure 1(a). To obtain the tree in
Figure 1(b), the gall was broken by removing edge (u1,x)
and applying forced contraction to node x; to obtain the tree
in Figure 1(c), the gall was broken by removing edge (u2, x)
and applying forced contraction to node . In general, given
a network NV with p reticulation nodes, we say that a tree T'
is induced by N if T can be obtained by removing exactly
one of the two edges incoming into each of the p reticulation
nodes in N.

DEFINITION 5. Let Q3 be gall in a gt-network N, with
RE(Q) = {e1 = (u1,z),e2 = (uz,x)}. Further, let wy be
the parent of w1, and wz be the parent of us. Assume tree
Ty is obtained from N by removing edge e1, and tree Ts
is obtained from N by removing edge e2. The two directed
paths w ~ w1 and w ~ uz together define a “reticulation
path” in Ty, and the two directed paths w ~» wsa and w ~» uy
together define a “reticulation path” in Ts.

Given a gt-network with m galls, there are 2" possible ways
of breaking the m galls, and thus inducing a tree. There is
a direct correspondence between the edges and nodes of a
gt-network IV and a tree T induced by N, and hence we talk
about a node or edge of T in N, or a node or edge of N in
T (excluding the edges in RE(Q) and the nodes removed by
forced contraction). We denote by RP?(T') the “reticulation
path” in T that results from breaking gall (. The marked
edges in tree 71 of Figure 1(b) form the reticulation path
RP®(T1), and the marked edges in tree T> of Figure 1(c)
form the reticulation path RP(T:) (we also use RP?(T)
to denote the edges on the reticulation path in T).

2.4 The rSPR operation

The rSPR operation transforms rooted trees into other
rooted trees, and gene trees contained inside species net-
works are related to each other by rSPR operations; we now
explain this relationship. Observe that the two rooted trees
T: and T3 in Figures 1(b) and 1(c) (induced by the network
in Figure 1(a)) differ only in the location of the subtree T
Tree T» can be obtained from 77 by “pruning” the subtree
T and “regrafting” it to another edge. In this case, we say
that T5 is obtained from 7% by one rooted subtree prune and
regraft (rSPR) operation.

DEFINITION 6. (From [1]) A rooted subtree prune and
regraft (rSPR) on a rooted binary tree T is defined as cut-
ting any edge and thereby pruning a subtree, t, and then
regrafting the subtree by the same cut edge to a new vertex
obtained by subdividing a pre-existing edge in T —t. We also
apply a forced contraction to maintain the binary property
of the resulting tree.

The rSPR distance between two rooted binary trees 77 and
T>, denoted by drspr(T1,72), is the minimum number of
rSPR operations needed to obtain 7% from 77. Computing
the rSPR distance between trees plays a central role in the
method that we propose for reconstructing networks. We
formally define the (decision) rSPR distance problem as fol-
lows.

DEFINITION 7. (The m-rSPR Distance Problem)

Input: Two binary trees, Th and T, leaf-labeled by a set S
of n taza, and a nonnegative integer m.

Question: Is drspr(T1,T2) =m?

The m-rSPR Distance Problem is of unknown computa-
tional complexity [1]. However, for any constant m, we can
solve the m-rSPR Distance Problem in polynomial-time, as
we show in the following theorem.

THEOREM 1. Given two binary trees Th and T> leaf-labeled
by a set S of n leaves, and a constant m, we can decide
whether drspr(T1,T2) = m in O(nzm) time.

wl w2 wl

ul u2

T

(a)

w2

w2 ul

T

()

Figure 1: (a) A gall Q whose coalescent and reticulation nodes are w and z respectively. (b) and (c) show
the two possible ways of “breaking” the gall @) to induce trees 77 and 73, respectively. The marked edges in

T, and T» form RP® (T1) and RP® (T2), respectively.

The proof follows directly from Definition 6 and Theorem 2.1
of [1], and is omitted. In this paper, we give an O(mn) al-
gorithm for reconstructing a gt-network with m reticulation
nodes from a pair of trees 77 and 75, each on n leaves.

3. RETICULATE EVOLUTION

A phylogeny of a set S of organisms is a graphical rep-
resentation of the evolution of S, typically a rooted binary
tree, leaf-labelled by S. However, events such as hybrid spe-
ciation and horizontal gene transfer require non-tree models
for accurate representations of evolution.

In what follows we will assume that the individual gene
datasets are recombination-free (so that meiotic recombi-
nation, or exchanges between sister chromosomes, does not
take place); this simplifies our analysis, and allows us to as-
sume that all gene evolution is tree-like [4, 13, 17]. We also
assume there are no gene gains or losses in the network.

It is clear that trees are inappropriate graphical models
of species evolution when reticulation occurs, though still
appropriate for geme evolution: in hybrid speciation, two
lineages recombine to create a new species, as symbolized
in Figure 2(a), but genes evolve down trees contained in
the network as shown in Figures 2(b) and (c). In lateral
(i.e., horizontal) gene transfer, genetic material is trans-
ferred from one lineage to another without resulting in the
production of a new lineage, as symbolized in Figure 2(d).
And, as in hybrid speciation, each site evolves down a tree
within the network; that is, some sites are inherited through
lateral transfer from another species, as in Figure 2(e), while
all others are inherited from the parent, as in Figure 2(f).

3.1 Maddison’s approach to phylogeny recon-
struction

In 1997, Wayne Maddison [10] made an important obser-
vation which directly suggests a technique for reconstructing
phylogenetic networks, via a “separate analysis” approach,
which we now describe. Maddison observed that when there
is one reticulation in the network, there are two trees within
the network, and every gene evolves down one of these two
gene trees. Furthermore, the two trees are related to each
other by a single rSPR move, and given the two trees, it
is straightforward to construct the network that contained
both trees. Maddison also suggested that when the network
contains m reticulations, then any two trees contained in

the network would be related to each other by a sequence
of at most m rSPR moves (though the specific technique for
producing the network from two of its constituent trees was
not provided). Maddison’s observations imply the following
method for constructing phylogenetic networks:

e Step 1: For each gene dataset, infer a gene tree.

e Step 2: If the two trees are identical, return that tree.
Else, find the minimum network that contains both
trees.

While Maddison showed how to perform Step 2 when the
minimum network contains a single reticulation, he left open
how to do Step 2 when the network contains more than
one reticulation. However, finding such a network requires
computing the rSPR distance between the two binary gene
trees. This is a problem of unknown computational com-
plexity, which is a computational limitation of Maddison’s
approach.

The other limitation is potentially more serious: if the
gene trees have errors in them, then the minimal network
that contains the gene trees may be incorrect. Therefore,
Maddison’s method needs to be modified to work with errors
in the estimated gene trees.

In this paper we address both problems. In Section 4 we
show how to reconstruct a gt-network with any number of
reticulations from accurate gene trees (under an additional
assumption about the network). In Sections 5 and 6 we show
how to reconstruct a network with a single reticulation from
gene tree estimates that need not be accurate. In our future
work, we will investigate how to combine these approaches.

4. RECONSTRUCTING GT-NETWORKS
WHEN GENE TREE ESTIMATES ARE
ACCURATE

There are two main limitations to Maddison’s approach:
(1) the construction of a network from two gene trees is only
described explicitly when the network contains exactly one
reticulation; (2) obtaining accurate binary trees in practice
may not be possible in most cases. In this section we address
the first limitation by showing how to accurately construct
a gt-network, with any number of reticulations, from two of
its constituent gene trees. However, since any two gene trees
may not involve both parents in each reticulation, the best

a

A BD C A B D C A B D C A BD C A B D C A B D C
(a) (b) (c) (d) (e) ()

Figure 2: Hybrid speciation: the species network in (a) and its two induced (gene) trees in (b) and (c).
Lateral gene transfer: the species network in (d) and its two induced (gene) trees in (e) and (f).

we can hope for is to reconstruct the minimal network that
contains both trees; this is what we construct. We address
the second limitation in the next section.

We begin by characterizing networks in general, using the
model of [9], but with the added constraints that there is
at least one regular speciation event between any two retic-
ulation events, and that a species does not become extinct
immediately after a reticulation event. Graph-theoretically,
there is at least one tree node (whose two children are also
tree nodes) on the directed path between any two reticu-
lation nodes, and if one of the two children of a tree node
is a reticulation node, then the other child is a tree node
(see [9] for a discussion of the ramifications of missing taxa
on reconstructing networks). In this case, we can obtain a
nice characterization about the set of gene trees induced by
a species network with m reticulations.

THEOREM 2. A species network N with m reticulation
nodes induces 2™ distinct trees.

PrOOF. We prove this by induction on m. It is easy to
see that a network NV with 0 reticulations is a tree, and hence
induces one tree. Further, a network N with one reticulation
induces two trees that differ in the location of the subtree
rooted at the reticulation node (see Figure 2 for example).
Assume that any network with m reticulations induces 2™
trees and consider a network N with m + 1 reticulations.
Let x be a reticulation node in N below which there are no
other reticulation nodes. Let w1 and u2 be the two parents
of . The node u; is a tree node, and has another child v (a
sibling of z), and wu2 is a tree node, and has another child w
(different from v and a sibling of x). If we delete the edge
(u1,7), then the resulting network, N’ has m reticulations,
and by the induction hypothesis, N’ induces 2™ distinct
trees, where the subtree rooted at x is attached to node
uz in all these trees. If we delete the edge (u2,x), then
the resulting network, N” has m reticulations, and by the
induction hypothesis, N”' induces 2™ distinct trees, where
the subtree rooted at x is attached to node w; in all these
trees. Hence, we have two sets of trees, each containing 2™
distinct trees, and clearly the two sets are different, due to
the location of the subtree rooted at x. Therefore, we have
2™+ distinct trees. [

As the example in Figure 1 illustrated, the gene trees in-
duced by a species network are related through the rSPR
operation. We extend this to the general case (with more
than one reticulation) in the following theorem.

THEOREM 3. Let T be a set of 2™ distinct trees,
T1,To,...,Tom. Then, T is the set of trees induced by a

network N with m reticulations if and only if for every tree
T, €T, {Ty : drspr(Ti, Ty) = k}| = (), where 0 < k < m.

PrOOF. We first prove the direction “only if”. Let 7
be a set of 2™ distinct trees induced by a network with m
reticulations; we prove that property in the theorem holds
by induction on m.

For the base case of m = 1, let 7 = {T1,T2} be the set
of two trees induced by a networks N with one reticulation.
Let z be the reticulation node in network N, and its two
parents are u and v. Assume, without loss of generality, that
x is a child of w in T3, and x is a child of v in T>. Hence,
the the two trees 11 and T, differ only by the location of
the subtree rooted at x. Obviously, tree T> can be obtained
from 77 by one rSPR move in which the subtree rooted at
z is cut from its parent u, and connected to v (see Figure 2
for an example of this scenario). Hence, drspr(T1,72) = 1.

Assume that every network with m reticulations satisfies
the property in the theorem and let N be a network with
m + 1 reticulations, and let x be a reticulation node below
which there are no other reticulation nodes. Further, assume
u1 and us are the two parents of z. Let N’ be a network with
m reticulations obtained from N by removing the subtree T’
rooted at x, along with the two edges (u1,x) and (ug2,x). Let
T be a tree induced by N’. Then, in the set of trees induced
by N’, there are (’;) trees whose rSPR distance from T is
k, and (k’fl) trees whose rSPR distance from T is k — 1
(by the induction hypothesis). Each one of those trees will
contribute two trees to the set U of trees induced by N, with
the location of T, being the only difference between the two
copies of each tree. Half of those trees will maintain their
rSPR distance from 7' and the other half will increase their
rSPR distance (depends on where the subtree T; is attached
in each tree). Therefore, in the set of trees induced by N,
the number of trees whose rSPR distance from T is k equals
(71?) + (/k’fl)7 which equals (m,jl).

For the “if” part, let 7 be a set of 2™ trees that satisfies
the property in the theorem. Let 71 and 7% be two trees in
T such that drspr(T1,T2) = m. Then, T5 can be obtained
from T1 by m rSPR operations, where in each operation
an edge e; is cut, thus pruning subtree t;, which is then
regrafted to edge e}, for 1 < i < m; let U = {t; : 1 <
it < m}. Every tree T' € 7 such that d,spr(T",T1) = q,
1 < g < m, can be obtained from T: by ¢ rSPR operations
that involve only subtrees from the set U; otherwise, there
would exist a tree 7" € T such that d,spr(T",T1) > m,
which contradicts the property in the theorem. The network
N is obtained from T} by adding a set £ = {ej} of edges
to tree T, where edge e connects edges e; and e (directed
from e; to e;). The resulting network N has m reticulations,

UL, U2, - - -, Um, and it induces the 2™ trees in 7. [
4.1 Efficientreconstruction of gt-networks from
gene trees

Theorem 3 implies that given the “full” set of trees in-
duced by a gt-network, we can reconstruct the network via
a series of rSPR distance computations among the trees.
However, given a pair of trees induced by a gt-network, we
can only reconstruct a minimal (in terms of the number of
reticulation nodes) gt-network that induces these two trees.
In what follows, we show how to efficiently reconstruct such
a minimal network from a pair of trees. Hereafter, we use
n to denote the number of leaves in the trees as well as
networks.

The intuition behind our algorithm is as follows. Given
two trees T1 and T3, induced by a gt-network N, we first
“mark” the edges of each tree that are incompatible with
the other tree (symbolized by U(T1,72) and U(T2,T1) in
the proofs). If the two trees are m rSPR moves apart, the
marked edges in tree Th would form m node-disjoint paths in
T, and similarly for tree T>. While necessary, this condition
is not sufficient; an extra step is needed, in which, for each
maximal path p; of marked edges in T4, there must exist a
unique maximal path ps of marked edges in T>, where the
endpoints of the two paths correspond to one rSPR move.

LEMMA 1. Let Th and 1> be two trees induced by a gt-
network N. Further, assume that gall QY in N was bro-
ken in the two different ways to obtain Th and T>. Then,
RP®(Ty) CU(T:1,Tz), and RP®(Tz) C U(T», Ti).

PROOF. Let RP? be formed of the two paths p1 and p»
whose tail is w. Further, assume p; is the path attached to
edge e1 and p» is the path attached to ez, where RE(Q) =
{e1,e2}. Let X be the subtree rooted at node z, Ti be
obtained by removing edge e from @, and 7% be obtained
by removing edge ez from (). Then, in Ti, the leaves of
X are under the edges of p2 but not under the edges of
p1, whereas in T, the leaves of X are under the edges of p1
but not under the edges of pz. Hence, the edges on RP%(T})
are incompatible with the edges of RP?(T%), and vice versa.
Therefore, we have RP?(T1) C U(T1,T:) and RP?(T3) C
U(Tz,Ty). O

LEMMA 2. Let Th and 1> be two trees induced by a gt-
network N. Further, assume that gall Q@ in N was broken
in exactly the same way to obtain both T and T>. Then,
RP(TY)NU(T1,Tz) = 0, and RP9(T2) NU(T>, T1) = 0.

PROOF. Since the gall @ is broken in exactly the same
way to obtain the two trees 71 and Tb, it follows that the
edges on RP®(T}) induce the same bipartitions as those
induced by the edges of RP?(T:). Hence, the edges of
RP®(T1) and RP%(T») are mutually compatible. Further,
the edges of RP?(T}) are compatible with E(T%)\ RP?(T3);
otherwise, the network N would not be a gt-network (there
would be two “overlapping” galls). Similarly, the edges of
RPC(Ty) are compatible with F(T1)\ RP?(T}). Therefore,
it follows that RP?(Ty) N U(T:,T2) = § and RP%(Tz) N
U(T:,Th)=0. O

Let T be a tree induced by a gt-network N. We denote by
NG(T) the set of all edges e that are not on any gall in
N. Formally, NG(T) = {e € E(T) : for all galls Q in N,
e ¢ RP9(T)}.

LEMMA 3. Let Th and Tz be two trees induced by a gt-
network N. Then, NG(Ty) NU(T1,T2) = 0, and NG(T2) N
U(T>, Th) = 0.

PROOF. Assume e = (u,v) is an edge in NG(T1)NU (11, T2).
Let A be the subtree of T; rooted at v. Since e € U(T1,T2),
then, for some edge ¢ = (u',v') in Tz, L(A) N L(B) # 0,
where B is the subtree of T rooted at v'. Let X = L(A) \
(L(A) N L(B)). Then, in tree T1, X is under edge e, and
in tree T, X is not under edge ¢’. Hence, edges e and e’
are members of E(Q) for some gall Q; a contradiction that
e € NG(Ty). Therefore, NG(T1) N U(T1,T2) = 0; similarly,
we prove that NG(T2) NU(T>,T1) = 0. O

THEOREM 4. Let N be a gt-network with q galls
{Q1,Q2,...,Qq}, and Th and T be two trees induced by N.
Further, assume that exactly m of the q galls were broken
in the two possible ways to obtain the two trees T and Ta,
and the other ¢ — m galls were each broken in a single way.
Then, U(T1,T2) forms m node-disjoint undirected paths in
Ty, and U(T2,T1) forms m node-disjoint undirected paths in
T.

The proof follows immediately from Lemma 1, Lemma 2,
and Lemma 3, and is omitted. Stated differently, Theo-
rem 4 implies that if 77 and 7> are two trees induced by
a gt-network N such that drspr(T1,T2) = m, then each of
the two sets U(T1,T2) and U(T%,T1) forms m node-disjoint
undirected paths in 7% and 75, respectively.

Let T1 and T% be two trees induces by a gt-network N,
such that U(T1,T2) forms a set of node-disjoint undirected
paths in T4, and U(T2,T1) forms a set of node-disjoint undi-
rected paths in T5. Let p1 be one such path in U(T1,T%),
and ps be one such path in U(T2,71). Further, assume
END(p1) = (U1,V1) and END(p2) = (U2, V2). We say
that p1 yields p2 in one rSPR move (via subtree X),
denoted p1 |:X p2, if there exists a nonempty subtree X
such that (1) X is a subtree of either U; or Vi, (2) X is a
subtree of either U or Vs, and (3) p1 N U(TY,T5) = () and
p2NU(T5,T1) =0, where T} =Ty \ X and Ty, = T> \ X.

THEOREM 5. Let Th and T be two trees induced by a
gt-network N. Further, assume that U(T1,T2) forms a set
P1 of m node-disjoint undirected paths pi,ps,...,pL, in Ti,
and U(T2,T1) forms a set P» of m node-disjoint undirected
paths p3,p3,...,p2 in Ta. Then, drspr(Ti,T2) = m if
there is an injective function f : Pi — Py and m subtrees
X1,Xa,..., X such that f(p;) = p? iff pi =% p?, where
1<4,§<m.

PrOOF. Let P; and P> be the two sets of paths in the
lemma, and let f be the injective function. Let p; € Py and
p? € P, be two paths such that f(pi) = f(p?) Assume X;
is the subtree such that p! |:Xi p?. Then, X; is the subtree
whose pruning from 77 and regrafting it to another edge (to
obtain tree T3) yielded paths pt and p? in the two trees,
respectively. Since there are m such pairs of paths, there
are m such subtrees X; whose pruning and regrafting in 71
would yield a tree T such that U(Th,T>) = (), which implies
T =Ti. Hence, drspr(Th,T2) =m. 0O

THEOREM 6. LetTi and T2 be two binary trees induced by
a gt-network N. We can decide whether drspr(Ti,T2) =m
in O(mn) time.

PROOF. Preprocess the trees so that (1) For every two
leaves s; and s; in either tree, the least common ancestor
(LCA) of these two leaves can be found in constant time.
This can be achieved in O(n) time using the techniques from
[3, 7], and (2) For any internal nodes, ¢, the number 3(7) of
leaves below ¢ can be found in constant time. Further, if
S; is the set of leaves under ¢, then LC'A(S;) can be found
in constant time. This can be achieved in O(n) time using
the techniques from [3]. After this preprocessing, comput-
ing U(T1,T2) and U(T2,T1) takes O(n) time (O(1) time for
each edge, and there are O(n) edges). This can be done by
observing that an edge e = (u,v) is in U(T1,T>) if and only
if 8(i) # B(LC A(S;)) (i is the number assigned to node v).
It takes O(n) time to check if U(T1,T2) forms a simple path.
Further, it takes O(n) time to check if the conditions of The-
orem 4 and Theorem 5 hold (we can find f(p;), if it exists,
in O(1) time, by using the “highest” node of path p; and
finding its counterpart in 7%; to find that subtree X; such
that p} |:X p?, we need to compute the four pairwise inter-
sections of a set in END(p;) and a set in END(p?), each
of which takes O(n) time, using bit vector representation of
sets). Hence, we can decide whether drspr(71,T2) = m in
O(mn) time. [

Now, it is straightforward to construct a gt-network N with
m galls in O(mn) time, given two induced trees 71 and T»
such that drspr(T1,T2) = m.

THEOREM 7. Let Th and T> be two binary trees such that
drspr(Ti,T2) = m. We can decide whether T1 and T> are
induced by a gt-network N with m reticulation events, and
if so construct such N, in O(mn) time.

PrOOF. By Theorem 6, we can find the m subtrees
{X1,...,Xm}, such that p; =% p?, for 1 < i < m, where
pi is a path in U(T1,Tz), p? is a path in U(T»,T:1), and
f(p}) = p? (f is the injective function in the definition of
=%). All this can be done in O(mn) time. We form the gt-
network N from T3 as follows. For each path p} in U(T1, T»)
and its corresponding subtree X;, X; will be attached to one
end of p}. We add another edge from the other end of p} to
the root of X, thus creating a network /N with m galls. Since
the paths are node-disjoint, N will be a gt-network. [

S. RECONSTRUCTING GT-NETWORKS
WHEN GENE TREE ESTIMATES ARE
INACCURATE

The main limiting factor in Maddison’s approach is that
methods, even if statistically consistent, can fail to recover
the true tree. Even on quite long sequences, some topo-
logical error is often present. This topological error can be
tolerated in a phylogenetic analysis, but it makes the infer-
ence of phylogenetic networks from constituent gene trees
difficult. To overcome these limits, we propose a method
that allows for error in the estimates of the individual gene
trees; consequently, our method performs much better in
practice (as our simulation studies show).

Before we describe the method, we provide some insight
into its design. When methods such as maximum parsi-
mony or maximum likelihood are used to infer trees, typi-
cally a number of trees is returned, rather than a single best
tree. For example, in maximum parsimony searches, es-
pecially with larger datasets, there are often many equally

good trees (all having the same best score), and all can
be returned (along with suboptimal trees, if desired). In
maximum likelihood, although the best-scoring tree may be
unique, the difference in quality between that tree and the
next best tree(s) can be statistically insignificant, and so
again, a number of trees can be returned [14]. A common
output of a phylogenetic analysis is the strict consensus of
these trees (that is, the most resolved common contraction
of all the best trees found).

The interesting, and highly relevant, point here is the fol-
lowing observation, supported by both empirical studies on
real datasets and simulations: the strict consensus tree will
often be a contraction of the true tree. Thus, even when ev-
ery tree in the set of best trees is a little bit wrong, the strict
consensus tree (which contains only those edges common to
all the best trees) is likely to be a contraction of the true
tree. This observation suggests the following approach to
inferring phylogenetic networks.

e Proposed Approach

e Step 1: For each gene dataset, use a method (such
as maximum parsimony or maximum likelihood) of
choice, to construct a set of “best” trees, thus pro-
ducing sets 77 and 7s.

e Step 2: Compute the strict consensus tree t; for 7;,
fori=1,2.

e Step 3: Find trees T1 and T% refining ¢1 and t2 such
that T; refines ¢; for each ¢ = 1,2, and T1 and T» are
induced trees within a gt-network with p reticulations,
for some minimum p.

When p = 0, the two consensus trees are compatible, and we
would return the compatibility tree; see Section 2.1. We now
show how to handle the third step in this method when p =1
(solving this for general p is currently an open problem). In
this case, Step 3 involves solving the following problem.

e Combining consensus trees into a network

(the ConsTree-Network Problem)

e [nput: Two trees, t1 and t2, on the same set of leaves
(not assumed to be binary)

e QOutput: A network N inducing trees T7 and T», such
that N contains one reticulation, and T; refines t;, for
i = 1,2, if it exists; else fail.

We now provide a linear-time algorithm for this problem.
There are two cases to consider: when the two consensus
trees are compatible, and when the two trees are incompat-
ible.

5.1 Compatible consensus trees

In most cases, if the consensus trees share a common re-
finement, we might believe the evolution to be tree-like (in
which case we should combine the datasets, and analyze a
tree directly). However, suppose we have reason to believe
that a dataset has undergone reticulation, so that a tree
is not an appropriate representation of the true tree. In
this case, we can still seek reticulate evolutionary scenarios
compatible with our observations. We begin with a simple
lemma.

OBSERVATION 1. Let t be a binary tree that refines an
unresolved tree T', and let p be a path in tree t. Then, when
restricted to the edges of T, p forms a path in T as well.

LEMMA 4. Let t be an unresolved tree. Then, there ex-
ist two binary trees T1 and T> that refine t and such that
drspr(T1,T2) = 1.

PRrROOF. Let z be a node with outdegree 3, and let v1, va,
and vz be the three children of node x. We obtain T from ¢
by removing the edges (z,v1) and (z,v2), adding a new node
u with an edge (x,u), and then making v1 and vz children
of u. The tree T> can be obtained from ¢ by removing the
edges (z,v2) and (z,v3), adding a new node u with an edge
(z,u), and then making v2 and vs children of u. The rest of
the nodes of Th1 and T> are resolved identically in both trees.
It is obvious that 7% can be obtained from 77 by pruning vs
from its parent and attaching it to edge (x,vs) in 71, and
hence dyspr(T1,T2) =1. O

Lemma 4 can be generalized to the case where t; and t2 are
two unresolved, yet compatible trees, as follows.

LEMMA 5. Letti andtz be two compatible unresolved trees.

Then, there exist two binary trees Th and 1> that refine t1
and to respectively, and drspr(T1,T2) = 1 if and only if t1
and t2 have a common refinement t that is not fully resolved.
Furthermore, we can determine if these two trees exist, and
construct them, in O(n) time.

PRrROOF. The proof of the “if” part follows from Lemma 4.
We prove the “only if” part. Let 71 and 7% be two binary
trees that refine two unresolved (compatible) trees t1 and ¢2,
such that drspr(T1,T2) = 1. Since ¢t1 and t2 are compatible,
then they share a common refinement, ¢t. The two binary
trees 17 and T also refine ¢. Since 77 and 7% are different
binary trees and refine the same tree ¢, it follows that ¢ is
not fully resolved. [

5.2 Incompatible consensus trees

We now address the last remaining case, where the consen-
sus trees are incompatible. We begin with a simple lemma.

LEMMA 6. Let T1 and 1> be two binary trees that refine
two unresolved trees t1 and ta. Then, U(t1,t2) C U(T1,T2).

PROOF. Let e € U(t1,t2). Then, e € E(t1), and conse-
quently e € E(T1). Further, e is incompatible with t2, and
hence is incompatible with T5. It follows that e € U(T1, T2).
Therefore, U(t1,t2) CU(Th,T2). O

LEMMA 7. Let t1 and t2 be two unresolved incompatible
trees. If there exist two binary trees Th and T that refine t1
and t2, respectively, and such that drspr(T1,T2) = 1, then
U(ti,t2) and U(tz,t1) are both simple paths in t1 and to,
respectively.

PROOF. Assume U(t1,t2) is not a simple path in t1. Then,
by Theorem 4, it follows that U(T1,7%) is not a simple path
in 71, and hence drspr(T1,T2) # 1; a contradiction. There-
fore, U(t1,t2) forms a simple path in ¢;. Similarly, we es-
tablish that U(t2,t1) forms a simple path in ¢2. [

LEMMA 8. Let t1 and ta be two incompatible unresolved
trees, such that U(t1,t2) forms a path p1 int1, and U(t2,t1)
forms a path ps in ta. Further, let END(p1) = (A1, B1) and
END(p2) = (A2,B2). Let X;, 1 <1i < 4, be the following
faur sets: X1 = (A1 — Az) N (Bz — Bl), Xo = (Al — Bz) N
(Az — Bl), X3 = (Bl — Az) M (Bz — Al), and X4 = (Bl —

B3) N (A2 — A1). Then, there exist two binary trees Ty and
T> that refine t1 and ta, respectively, and drspr(T1,T2) = 1,
if and only if there exists an i, 1 < i < 4, such that (C1)
tils\x; and t2|s\x, are compatible, (C2) t1|x, and ta2|x,
are compatible, and (C3) ti|g\x, contains all the edges in
U(t1,t2), and ta|g\x, contains all the edges in U(tz,t1).

PROOF. Assume that X;, for some 1 < i < 4, satis-
fies both conditions C1 and C2. Then, resolve t1|g\x, and
t2|s\x, identically, resolve t1|x, and ta|x, identically, and
finally attach the resolved subtrees t1|x, and t2|x, in their
corresponding subtrees. The result is obviously two binary
trees Th and T> that differ only in the location of the subtree
leaf-labeled by X;; i.e., drspr(T1,T2) = 1. Let T1 and T»
be two binary trees that resolve the two incompatible un-
resolved trees t1 and ¢2, such that drspr(T1,72) = 1. By
Lemma 6, p1 C U(T1,72) and p2 C U(T%2,71). By Theo-
rem 5, 75 can be obtained from 77 by pruning a subtree
t' from one side of the path U(T1,T%) and regrafting it on
the other side of the path. It follows that ¢1|s\r() and
t2|s\rL(/) are compatible, and also that t1|./) and t2|p)
are compatible (since they refine the same tree t'). It is
straightforward to verify that L(t") is equal to X;, for some
1<i<4. O

We now state the major theorem of this section.

THEOREM 8. We can solve the ConsTree-Network Prob-
lem in O(n) time. That is, given two unresolved trees t1 and
ta, in O(n) time we can find two binary trees Ty and T that
refine t1 and ta2, respectively, such that drspr(T1,T2) = 1,
when such a pair of trees exist. Further, once we have T and
T>, we can compute a phylogenetic network with exactly one
reticulation event inducing these trees in O(n) additional
time.

PROOF. We preprocess the trees so that: (1) For every
two leaves s; and s; in either tree, the least common ancestor
(LCA) of these two leaves can be found in constant time.
This can be achieved in O(n) time using the techniques from
[3, 7], and (2) For any internal node, i, the number 3(¢) of
leaves below ¢ can be found in constant time. Further, if
S; is the set of leaves under ¢, then LC'A(S;) can be found
in constant time. This can be achieved in O(n) time using
the techniques from [3]. After this preprocessing, computing
U(t1,t2) takes O(n) time (O(1) time for each edge, and there
are O(n) edges). It takes O(n) time to check if U(t1,t2)
forms a simple path. By Lemmas 7 and 8, we first check
whether U(t1,t2) and U(t2, t1) form simple paths. Then, we
check whether conditions C1 and C2 of Lemma 8 hold; if so,
then we can obtain two binary trees 71 and 715 that resolve t1
and t2, such that drspr(T1,7T2) = 1. Having preprocessed
the trees, testing the conditions of these two lemmas can
be achieved in O(n) time. Using bit vectors to represent
the sets of taxa, we can preprocess the trees in O(n) time
such that we store at each node the set of taxa under it;
hence, it takes O(n) time to compute the sets X;, 1 <1i < 4.
We construct N from 77 and T» using in O(n) time using
Theorem 7. Hence, the algorithm takes O(n) time. [

6. SPNET: OUR TECHNIQUE FOR INFER-
RING GT-NETWORKS

SPNET, for Species Network, is a method we have de-
signed for inferring networks (or trees, depending on the

data) under realistic conditions. We base SPNET on the
approach we outlined in the previous section, but we specif-
ically use maximum likelihood for tree reconstruction, and
we compute the strict consensus of the best two trees for
each dataset. In order to facilitate a comparison to other
methods, such as NeighborNet, we do not allow SPNET to
return “fail”, and so we apply Neighbor Joining (NJ) to all
inputs on which we would otherwise return “fail.”

e SpNet

e Step 1: We find the best two trees on each dataset
under maximum likelihood,

e Step 2: For each dataset, we compute the strict con-
sensus of the two trees, thus producing the trees t; and
ta, and

e Step 3: If ¢t1 and t2 are compatible, we combine
datasets and analyze the combined (i.e., concatenated)
dataset using NJ, thus returning a tree. Else, we apply
our algorithm for ConsTree-Network to t1 and t2. If
we can, we return a network N with one reticulation
(if trees T1 and T exist refining ¢1 and t2, respectively,
contained within the network N); if no such network
exists, we apply NJ to the concatenated dataset, and
return a tree. (Alternatively, we could simply return
“fail”.)

6.1 Experimental results

We have done extensive studies evaluating the perfor-
mance of the SPNET method in simulation, and compared
the method to NeighborNet, NJ, and Maddison’s method.
Not surprisingly, the method outperforms Maddison’s method
since it is designed to allow for error in the data. Interest-
ingly, it also outperforms NJ when the data are generated
on a network with a reticulation (it has essentially identical
performance to NJ when the data are generated by a tree,
which is not surprising). The comparison between SPNET
and NeighborNet is more interesting, and is the focus of our
brief discussion here.

We focus here on the results of our experiments on 20-
taxon trees and networks with one reticulation. We sim-
ulated evolution down these trees and networks (using the
tools in [11]) under the GTR model with gamma distributed
rates across sites, and invariant sites (using the settings of
[18]); reticulations in the networks modelled hybrid speci-
ation. We produced two sequence datasets for each net-
work, one for each of the gene trees contained within the
network. The concatenated sequences were given to both
NJ and NeighborNet (since those two methods are based on
a combined analysis approach), but the separate gene se-
quences were given to SPNET (since this method is based on
a separate analysis approach). Furthermore, concatenated
sequences are required by both NJ and NeighborNet because
they operate on distance matrices produced from all of the
data used in an analysis.

We measured the topological accuracy of the inferred phy-
logenies (both trees and networks) with respect to the model
network as follows. We define C(N)-the bipartitions of a
network N—as the set of all bipartitions induced by the trees
contained inside IV; in other words,

cny= | cm
TeT(N)

where 7 (N) is the set of all trees induced by network N.

Given two networks, Ny, (the model network) and N; (the
inferred network), we define the false positives, which is
the number of incorrectly inferred bipartitions, as |C'(N;) —
C(Nm)|, and the false negatives, which is the number of
missing bipartitions, as |C(Ny,)—C(N;)|. To obtain the false
positive rate (FP) and false negative rate (FN), we normal-
ize both the false positives and false negatives by the number
of bipartitions in the model network (|C(Ny,)|). Hence, the
FN rate of any method is at most 100%, whereas the FN
rate may be larger than 100%.

False negative and false positive rates below 10% are good,
with rates below 5% very good, in evaluating tree recon-
struction methods.

Figure 3 shows that all three methods (NeighborNet, Sp-
NET, and NJ) can be distinguished primarily on the basis
of their false positive rates. That is, all three have excel-
lent false negative rates (less than 5%) on trees and very
good false negative rates (less than 10%) on networks with
one reticulation, when given long enough sequences; how-
ever, NeighborNet has very poor false positive rates on both
trees and networks with one reticulation, even at very long
sequences (4000 nucleotides). In particular, our method,
SPNET, has an excellent (i.e., very low) false positive rate,
but NeighborNet has a very high false positive rate, even at
long sequences. Furthermore, NeighborNet’s false negative
rate is quite comparable to that of SPNET, and so the huge
difference in false positive rates is very important.

Since SPNET uses NJ to analyze datasets whenever it can-
not infer a network with a single reticulation, a comparison
between SPNET and NJ is worth making. On trees they have
essentially identical performance, as expected. On networks
with a single reticulation, however, their performance is dis-
tinguishable: SPNET has an almost 0% false positive rate,
which means that it produces a network with essentially
no false edges, while NJ has (in these experiments) a false
positive rate that is approximately 5%. The two methods
have very close false negative rates. Thus, on networks with
one reticulation, SPNET produces networks which are, with
some reliability, contractions of the true network, while NJ’s
performance does not have the same reliability.

7. CONCLUSIONS AND ACKNOWLEDG-
MENTS

Our experiments show that NeighborNet, the current best
method for network reconstruction using a “combined analy-
sis” approach, has poor performance with respect to its false
positive rate; we hypothesize that this phenomenon is likely
to be true of combined analysis approaches in general. Our
new method, SPNET, works better than NeighborNet and
NJ in terms of reconstructing phylogenetic networks with a
single reticulation.

The main open problem is to develop methods which can
accurately reconstruct networks, in general, with more than
one reticulation. In our future research, we plan to com-
bine and extend the techniques we developed in this paper
in order to develop robust methods for estimating phyloge-
netic networks with many reticulations. An obvious direc-
tion is to solve the following problem: given two (or more)
non-binary trees on the same set of taza, find the minimum
network that contains refinements of each of the trees. The
quality of our method on networks with one reticulation
suggests that a solution to this problem will be very useful

FN(NNet)
x FN(SpNet)
0.4 FP(SpNet)
1 *\'—'\F 1 1.5 ‘\/\ 1 o FN(NJ)
v _FP(NJ)
g FN(NNet) g FN(NNet) go3
1 x FN(SpNet) R _ o1 x FN(SpNet) 1 *
s + FP(NNet) S + FP(NNet) g
0 FP(SpNet) a FP(SpNet) 502
o FN(NJ) o FN(NJ) \
05 v _FP(NJ) 0.5 v _FP(NJ) 1 o4 < 5 |
. —_
W\\; h@ -
0 7 0 v R | 0 &
1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

Sequence Length Sequence Length Sequence Length

Figure 3: FN and FP error rates of NeighborNet (NNet) and SPNET on 20-taxon networks, with 0.1 scaling
factor, with tree model phylogeny (left), and 1-hybrid network (middle). The rightmost graph shows the

results without the FP rate of NNet.

for phylogenetic network reconstruction, and should have
better accuracy (with respect to false positives) than exist-
ing approaches. However, the problem remains of unknown
computational complexity, even for gt-networks.

This work is supported by National Science Foundation
under grants DEB 01-20709 (Linder & Warnow), EIA 01-
21651 (Warnow), EIA 01-13654 (Warnow), EIA 01-21680
(Linder & Warnow), EF 01-31453 (Linder & Warnow), by
the David and Lucile Packard Foundation (Warnow), by the
Institute for Cellular and Molecular Biology at UT-Austin
(Warnow), by the Program in Evolutionary Dynamics at
Harvard University (Warnow), and by the Radcliffe Institute
for Advanced Study (Warnow).

8. REFERENCES

[1] B. Allen and M. Steel. Subtree transfer operations and
their induced metrics on evolutionary trees. Annals of
Combinatorics, 5:1-13, 2001.

[2] D. Bryant and V. Moulton. NeighborNet: An
agglomerative method for the construction of planar
phylogenetic networks. In R. Guigo and D. Gusfield,
editors, Proc. 2nd Workshop Algorithms in
Bioinformatics (WABI’02), volume 2452 of Lecture
Notes in Computer Science, pages 375-391. Springer
Verlag, 2002.

[3] W.H.E. Day. Optimal algorithms for comparing trees
with labeled leaves. Journal of Classification, 2:7-28,
1985.

[4] S.B. Gabriel, S.F. Schaffner, H. Nguyen, J.M. Moore,
J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice,

A. Lochner, M. Faggart, S.N. Liu-Cordero, C. Rotimi,
A. Adeyemo, R. Cooper, R. Ward, E.S. Lander, M.J.
Daly, and D. Altshuler. The structure of haplotype
blocks in the human genome. Science,
296(5576):2225-2229, 2002.

[5] D. Gusfield. Efficient algorithms for inferring

evolutionary trees. Networks, 21:19-28, 1991.

D. Gusfield, S. Eddhu, and C. Langley. Efficient

reconstruction of phylogenetic networks with

constrained recombination. In Proceedings of

Computational Systems Bioinformatics (CSB 03),

2003.

[7] D. Harel and R.E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM Journal on
Computing, 13(2):338-355, 1984.

[6

[8] J.G. Lawrence and H. Ochman. Reconciling the many
faces of lateral gene transfer. Trends in Microbiology,
10:1-4, 2002.

[9] C.R. Linder, B.M.E. Moret, L. Nakhleh, A. Padolina,
J. Sun, A. Tholse, R. Timme, and T. Warnow.
Phylogenetic networks: generation, comparison, and
reconstruction. Technical Report TR~-CS-2003-26,
University of New Mexico, 2003.

[10] W.P. Maddison. Gene trees in species trees.
Systematic Biology, 46(3):523-536, 1997.

[11] L. Nakhleh, J. Sun, T. Warnow, C.R. Linder, B.M.E.
Moret, and A. Tholse. Towards the development of
computational tools for evaluating phylogenetic
network reconstruction method. In Proc. 8th Pacific
Symposium on Biocomputing (PSB 03), pages
315-326, 2003.

[12] R. Page and M.A. Charleston. Trees within trees:
Phylogeny and historical associations. Trends in
FEcology and FEvolution, 13:356-359, 1998.

[13] D. Posada and C. Wiuf. Simulating haplotype blocks
in the human genome. Bioinformatics, 19(2):289-290,
2003.

[14] H. Shimodaira and M. Hasegawa. Multiple
comparisons of log-likelihoods with applications to
phylogenetic inference. Molecular Biology and
Ewvolution, 16:1114-1116, 1999.

[15] L. Wang, K. Zhang, and L. Zhang. Perfect
phylogenetic networks with recombination. Journal of
Computational Biology, 8(1):69-78, 2001.

[16] T. Warnow. Tree compatibility and inferring
evolutionary history. Journal of Algorithms,
16:388—-407, 1994.

[17] K. Zhang and L. Jin. HaploBlockFinder: haplotype
block analyses. Bioinformatics, 19(10):1300-1301,
2003.

[18] D. Zwickl and D. Hillis. Increased taxon sampling
greatly reduces phylogenetic error. Systematic Biology,
51(4):588-598, 2002.

